
 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 1 

 
StickOS™ BASIC User's Guide  v1.84 

http://www.cpustick.com 

 

1 Overview 
StickOS BASIC is an entirely MCU-resident 

interactive programming environment, which 

includes an easy-to-use editor, transparent line-by-

line compiler, interactive debugger, performance 

profiler, and flash filesystem, all running entirely 

within the MCU and controlled thru an interactive 

command-line user interface. 

 

In StickOS, external MCU pins may be bound to BASIC “pin variables” for 

manipulation or examination, and internal MCU peripherals may be managed 

by BASIC control statements and interrupt handlers. 

 

A StickOS-capable MCU may be connected to a host computer via a variety 

of transports and may then be controlled by any terminal emulator program, 

with no additional software or hardware required on the host computer. 

 

Additionally, when coupled with an MC13201 ZigFlea Wireless Transceiver, 

the MCU may be remotely controlled by another MCU, via a telnet/rlogin-like 

interface, eliminating the need for a direct connection to the host computer 

altogether.  Also, BASIC programs may trivially remotely access variables on 

other MCUs, enabling the use of “remote pin variables” or other forms of 

inter-MCU communication. 

 

On selected MCUs, the USB interface can optionally be configured into USB 

Host Mode, creating a trivial data logger to an external USB flash drive. 

 

Once program development is complete, the MCU may be disconnected from 

the host computer and configured to autorun its resident BASIC program 

autonomously. 

  

http://www.cpustick.com/


 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 2 

By its very nature, StickOS supports in-circuit emulation when it is running -- 

all you need is a transport connecting the MCU to a host computer, and you 

have full control over the target embedded system, just as if you were using an 

in-circuit emulator!  Alternatively, you can use the 2.4GHz zigflea wireless 

transport and have full control over the target embedded system with no 

connected transport at all!!! 

 

The StickOS BASIC programming environment includes the following 

features: 

 

o BASIC line editor 

o ansi or vt100'ish terminal support 

o BASIC compiler 

o compiles to a fast and safe intermediate bytecode 

o transparent line-by-line compilation is invisible to the user 

o integer variable/array support 

o string variable support 

o block structured programming and subroutine support 

o interactive BASIC debugger, supporting: 

o breakpoints, assertions, and watchpoints 

o live variable (and pin) manipulation and examination 

o execution tracing and single-stepping 

o edit-and-continue! 

o BASIC performance profiler 

o trivially see where your program spends its time! 

o BASIC file system 

o load and store multiple BASIC programs in flash 

o 2.4GHz zigflea wireless transport 

o remote control via a telnet/rlogin-like interface 

o remote variable access in BASIC 

o wireless BASIC program update 

o wireless StickOS firmware upgrade 

o USB Host Mode (on selected MCUs) 

o log StickOS "print" statements to external USB flash drive 

o external control of MCU I/O pins, implicit thru "pin variables" 

o digital input or output 

o analog input or output (PWM actually) 

o servo output 

o frequency output 

o uart input or output 

o i2c master input and output 

o qspi master input and output 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 3 

o 4-bit HD44780-compatible LCD output 

o 4x4 scanned keypad input 

o internal peripheral control 

o interrupts delivered to BASIC handlers! 

o interval timers, dma timers, ADC, PWM, uarts, i2c, qspi, etc. 

o direct MCU register access from BASIC for low-level 

control, thru MCU register variables 

o internal flash memory control 

o save programs and parameters to flash for standalone 

operation 

o prolong flash lifetime by storing incremental updates in 

RAM 

o clone one MCU‟s flash directly to another 

o upgrade StickOS firmware via terminal emulator! 

o no external flash programmers needed! 

 

Note that for the purposes of examples in this User‟s Guide, we‟ll be running 

StickOS primarily on an MCF52221 and MCF51JM128; other MCUs are 

similar. 

 

 

Table of Contents 
 

1 Overview ................................................................................................. 1 
2 Examples ................................................................................................. 6 

2.1 Embedded Systems Made Easy ....................................................... 6 
2.2 Embedded Systems Made Functional! ............................................. 9 
2.3 Wireless Embedded Systems Made Just as Easy! ......................... 13 
2.4 More Examples .............................................................................. 16 

2.4.1 Digital I/O Example .............................................................. 16 
2.4.2 Analog I/O Example .............................................................. 18 
2.4.3 Servo I/O Example ................................................................ 19 
2.4.4 Frequency I/O Example ......................................................... 20 
2.4.5 UART I/O Example ............................................................... 21 
2.4.6 I2C Master I/O Example ....................................................... 22 
2.4.7 QSPI Master I/O Example ..................................................... 23 

3 MCU Connections ................................................................................. 24 
3.1 Interface ......................................................................................... 24 
3.2 External Pins .................................................................................. 24 
3.3 Command-Line Transports ............................................................ 25 

3.3.1 USB Transport ....................................................................... 26 
3.3.2 USB Host Mode .................................................................... 32 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 4 

3.3.3 UART Transport .................................................................... 33 
3.3.4 Ethernet Transport .................................................................. 35 

4 StickOS .................................................................................................. 36 
4.1 First Boot & Pin Assignments ........................................................ 37 
4.2 Command-Line ............................................................................... 40 

4.2.1 StickOS Commands ............................................................... 41 
4.2.2 Getting Help ........................................................................... 41 
4.2.3 Entering Programs .................................................................. 43 
4.2.4 Running Programs .................................................................. 47 
4.2.5 Loading and Storing Programs ............................................... 49 
4.2.6 Debugging Programs .............................................................. 50 
4.2.7 Other Commands ................................................................... 54 

4.3 BASIC Program Statements ........................................................... 56 
4.3.1 Variable Declarations ............................................................. 56 
4.3.2 System Variables .................................................................... 60 
4.3.3 Variable Assignments ............................................................ 61 
4.3.4 Expressions ............................................................................ 63 
4.3.5 Strings .................................................................................... 65 
4.3.6 Print Statements ..................................................................... 67 
4.3.7 Variable Print Statements ....................................................... 68 
4.3.8 Input Statements ..................................................................... 69 
4.3.9 Read/Data Statements ............................................................ 70 
4.3.10 Conditional Statements .......................................................... 71 
4.3.11 Looping Conditional Statements ............................................ 72 
4.3.12 Subroutines ............................................................................. 75 
4.3.13 Timers .................................................................................... 77 
4.3.14 Digital I/O .............................................................................. 79 
4.3.15 Analog I/O .............................................................................. 80 
4.3.16 Servo I/O ................................................................................ 82 
4.3.17 Frequency I/O......................................................................... 83 
4.3.18 UART I/O .............................................................................. 84 
4.3.19 I2C Master I/O ....................................................................... 87 
4.3.20 QSPI Master I/O ..................................................................... 88 
4.3.21 Pin Interrupts .......................................................................... 89 
4.3.22 4x4 Scanned Keypad Support ................................................ 90 
4.3.23 HD44780-compatible LCD Support ...................................... 92 
4.3.24 Other Statements .................................................................... 93 

4.4 Performance .................................................................................... 94 
5 2.4GHz ZigFlea Wireless Operation ...................................................... 95 

5.1 ZigFlea Configuration .................................................................... 95 
5.2 ZigFlea Remote Control ................................................................. 95 
5.3 ZigFlea Remote Variables .............................................................. 96 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 5 

6 Standalone Operation ............................................................................ 97 
7 Slave Operation ..................................................................................... 98 
8 MCU Cloning ........................................................................................ 99 
9 MCU Downloading ............................................................................... 99 
10 MCU Upgrading .................................................................................. 100 
11 Appendix ............................................................................................. 101 

11.1 StickOS Command Reference ..................................................... 101 
11.1.1 Commands ........................................................................... 101 
11.1.2 Modes .................................................................................. 101 

11.2 BASIC Program Statement Reference ......................................... 102 
11.2.1 Statements ........................................................................... 102 
11.2.2 Block Statements ................................................................. 102 
11.2.3 Device Statements ............................................................... 103 
11.2.4 Expressions .......................................................................... 103 
11.2.5 Strings .................................................................................. 104 
11.2.6 Variables .............................................................................. 104 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 6 

 

2 Examples 

2.1 Embedded Systems Made Easy 
A simple embedded system, like a toaster oven temperature profile controller, 

can be brought online in record time! 

 
It’s as easy as... 

 

1. wire the MCU I/O pins to the embedded circuit 

a. wire MCU pin an0 to thermocouple op-amp output 

(I use an LM358) 

b. wire MCU pin an1 to solid state relay control input 

(I use a Teledyne STH24D25) 

2. install the cpustick.inf file by saving it to a file, right-clicking on the 

file, and selecting "Install"; you can ignore warnings about an 

unsigned driver package -- the driver is straight from Microsoft, and 

only the INF file is unsigned; the INF file allows Windows to bind a 

human readable name, "CPUStick", to the USB VID/PID presented to 

the host by StickOS 

3. connect a host computer to the USB interface on the MCU 
4. let the host computer automatically install the new hardware 

5. open a Hyper Terminal console window and connect to the MCU; 

press <Enter> for a command prompt 

6. configure the MCU I/O pins as appropriate 

 

MCU 

 

            an0 

            an1 

USB 

toaster oven 

op- 

amp 

thermocouple 

solid 

state 

relay 

ac power 

relay control 

to host computer  

Hyper Terminal 

(during  program 

development only) 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 7 

a. configure pin an0 as an analog input 

b. configure pin an1 as a digital output 

7. write and debug your BASIC control program, live on the MCU (see 

below) 

8. type “save” 

9. type “autorun on” 

10. turn the toaster oven full on (so that the relay can control it) 

11. type “reset” 

12. disconnect the host computer from the USB interface on the MCU 

 

The entire toaster oven temperature profile controller BASIC control program 

is shown below: 

 

 
 

 Line 10 declares two simple RAM variables named “target” and 

“secs” for use in the program, and initializes them to 0. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 8 

 Line 20 declares an analog input "pin variable" named 

“thermocouple” that is bound to pin an0, to read the 

thermocouple voltage, in millivolts 

 Line 30 declares a digital output "pin variable" named “relay” that 

is bound to pin an1, to control the solid state relay. 

 Line 40 declares the temperature target and delay time pairs for our 

temperature profile ramp. 

 Lines 50 and 60 configure a timer interrupt to call the "adjust" 

subroutine asynchronously, every second, while the program runs. 

 Lines 70 thru 100 set the target temperature profile while the program 

runs. 

 Lines 110 and 120 end the program with the solid state relay control 

turned off. 

 Lines 130 thru 190 use the declared pin variables to simply turn the 

solid state relay control off if the target temperature has been 

achieved, or on otherwise. 

 

Then: 

 

 “save” saves the program to non-volatile flash memory. 

 “autorun on” sets the program to run automatically when the MCU is 

powered up. 

 Finally, “reset” resets the MCU as if it was just powered up. 

  

Note that if terse code were our goal, lines 60 and 130 thru 190 could have all 

been replaced with the single statement: 

 
> 60 on timer 0 do let relay = thermocouple<target 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 9 

2.2 Embedded Systems Made Functional! 
With the advent of advanced serial peripherals based on the I2C or QSPI serial 

interfaces, embedded systems can take on a whole new level of real-world 

functionality! 

 

An LCD digital thermometer, displaying both Celsius and Fahrenheit, can be 

brought online in minutes, with just a quick study of the I2C peripheral 

protocol definitions!  The peripherals are: 

 

 Texas Instruments TMP102 temperature sensor, at I2C address 0x48 

 NewHaven Display NHD-C0220BiZ-FS(RGB)-FBW-3VM LCD 

display based on the ST7036 controller, at I2C address 0x3c 

 

 
It’s as easy as... 

 

1. wire MCU to its embedded circuit 

a. wire MCU pin scl to the temperature sensor, LCD display, 

and pull-up resistor 

b. wire MCU pin sda to the temperature sensor, LCD display, 

and pull-up resistor 

2. connect a host computer to the USB interface on the MCU (see 

above) 
3. write and debug your BASIC control program, live on the MCU (see 

below) 

4. type “save” 

5. type “autorun on” 

 

MCU 

 

            scl 

            sda 

USB 

to host computer  

Hyper Terminal 

(during  program 

development only) 

TMP 

102 

(0x48) 

NHD-

C0220 

BiZ 

(0x3c) 

http://focus.ti.com/docs/prod/folders/print/tmp102.html
http://www.newhavendisplay.com/index.php?main_page=product_info&cPath=315&products_id=2411


 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 10 

6. type “run” 

 

The entire LCD digital thermometer BASIC control program is shown below: 

 

 
 

 Line 10 declares four RAM variables: an integer to hold the current 

temperature in degrees C, two strings to represent the two lines of the 

display, and a third string used to blink an "activity indicator" on the 

display every two seconds. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 11 

 Line 20 initializes the activity indicator string to contain a space and 

an asterisk; these characters will be alternated on the right hand side 

of the second display line every other second. 

 Line 30 initializes the LCD display by calling the "initdisplay" 

subroutine. 

 Lines 40-100 are the main program loop: 

 first, we get the current temperature by calling the "gettemp" 

subroutine, 

 then, we format a string for the first line of the display in 

degrees Celsius, 

 then, we format a string for the second line of the display in 

degrees Fahrenheit, and include the activity indicator, and 

 finally, we display both lines by calling the "display" 

subroutine. 

 Lines 130-210 are the "gettemp" subroutine, which use the I2C 

protocol on the temperature sensor to extract degrees Celsius 

 Lines 230-330 are the "display" subroutine, which use the I2C 

protocol on the LCD display to display two lines of text 

 Lines 350-440 are the "initdisplay" subroutine, which use the I2C 

protocol to initialize the LCD display 

 Line 450 is read-only data used by the "initdisplay" subroutine to 

initialize the LCD display. 

 

Then: 

 

 “save” saves the program to non-volatile flash memory. 

 “autorun on” sets the program to run automatically when the MCU is 

powered up. 

 Finally, “run” runs the program. 

 

Here is the LCD digital thermometer in action: 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 12 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 13 

2.3 Wireless Embedded Systems Made Just as 
Easy! 

With the aid of an MC13201 ZigFlea Wireless Transceiver, a simple wireless 

embedded system, like a remote LED dimmer, can be brought online just as 

easily as a local embedded system! 

 

 
It’s as easy as... 

 

7. set the 2.4GHz zigflea wireless nodeid on each MCU 

8. wire MCU #1 to its embedded circuit 

c. wire MCU #1 pin an0 to the potentiometer 

9. wire MCU #2 to its embedded circuit 

a. wire MCU #2 pin dtin0 to the LED 

10. connect a host computer to the USB interface on MCU #1 (see above) 

11. write and debug your BASIC control program, live on MCU #1 (see 

below) 

12. use the 2.4GHz zigflea wireless transport to connect to MCU #2 

13. write and debug your BASIC control program, live on MCU #2 (see 

below) 

14. run the program on MCU #2 

15. disconnect from MCU #2 

16. run the program on MCU #1 

 

 

 

MCU & 

MC13201 

#1 

                an0 

 

USB 

to host computer  

Hyper Terminal 

(during  program 

development only) 

 

 

MCU & 

MC13201 

#2 

             dtin0 

 

 

2.4GHz 

zigflea 

wireless 

 

potentiometer 

LED 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 14 

The entire debugging session, including the writing and running of both 

MCU‟s BASIC control programs, is shown below: 

 

 
 

Note that all of this debugging session is occurring on the Hyper Terminal 

connected to the USB interface on MCU #1! 

 

First we write the program on MCU #1. 

 

 Notice in line 10 that we declare a local pin variable named 

“potentiometer” to read the value of the potentiometer, through 

analog input pin an0, in millivolts. 

 Then, in line 20, we declare a remote pin variable to control the LED 

on MCU #2 (through MCU #2‟s local pin variable!); the “as 

remote on nodeid 2” indicates that the real variable 

declaration is found on MCU #2. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 15 

 Then we simply enter an infinite loop reading the value of the 

potentiometer (again, in millivolts) every 100ms, and writing it to the 

LED on MCU #2. 

 

We then save the program to flash memory on MCU #1 and configure it to run 

automatically when the MCU powers up. 

 

Then we remotely connect to MCU #2 and write its program. 

 

 Notice in line 10 that we declare a local pin variable named “led” to 

control the LED, through analog output pin dtin0, in millivolts. 

 Then we simply enter an infinite loop, waiting for our local pin 

variable to be written remotely from MCU #1 every 100ms! 

 

We then save the program to flash memory on MCU #2 and configure it to run 

automatically when the MCU powers up. 

 

Finally, we run the program on MCU #2, disconnect from MCU #2 by 

pressing <Ctrl-D>, and run the program on MCU #1. 

 

At this point, adjusting the potentiometer on MCU #1 causes the LED 

brightness on MCU #2 to be correspondingly adjusted, after a 100ms delay!!! 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 16 

2.4 More Examples 

2.4.1 Digital I/O Example 

As a simple example, the following BASIC program generates a 1 Hz square 

wave on the “dtin0” pin: 

 
> 10 dim square as pin dtin0 for digital output 

> 20 while 1 do 

> 30   let square = !square 

> 40   sleep 500 ms 

> 50 endwhile 

> run 

<Ctrl-C> 

STOP at line 40! 

> _ 
 

Press <Ctrl-C> to stop the program. 

 

Line 10 configures the “dtin0” pin for digital output, and creates a variable 

named “square” whose updates are reflected at that pin.  Line 20 starts an 

infinite loop (typically MCU programs run forever).  Line 30 inverts the state 

of the dtin0 pin from its previous state -- note that you can examine as well as 

manipulate the (digital or analog or servo or frequency) output pins.  Line 40 

just delays the program execution for one half second.  And finally line 50 

ends the infinite loop. 

 

If we want to run the program in a slightly more demonstrative way, we can 

use the “trace on” command to show every executed line and variable 

modification as it occurs: 

 
> trace on 

> run 

  10 dim square as pin dtin0 for digital output 

  20 while 1 do 

  30   let square = !square 

    let square = 0 

  40   sleep 500 ms 

  50 endwhile 

  20 while 1 do 

  30   let square = !square 

    let square = 1 

  40   sleep 500 ms 

  50 endwhile 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 17 

  20 while 1 do 

  30   let square = !square 

    let square = 0 

  40   sleep 500 ms 

<Ctrl-C> 

STOP at line 40! 

> trace off 

> _ 

 

Again, press <Ctrl-C> to stop the program. 

 

Note that almost all statements that can be run in a program can also be run in 

“immediate” mode, at the command prompt.  For example, after having run 

the above program, the “square” variable (and dtin0 pin) remain configured, 

so you can type: 

 
> print "square is now", square 

square is now 0 

> let square = !square 

> print "square is now", square 

square is now 1 

> _ 

 

This also demonstrates how you can examine or manipulate variables (or 

pins!) at the command prompt during program debug. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 18 

2.4.2  Analog I/O Example 

The MCU can perform analog I/O as simply as digital I/O. 

 

The following BASIC program takes a single measurement of an analog input 

at pin “an0” and displays it: 

 
> new 

> 10 dim potentiometer as pin an0 for analog input 

> 20 print "potentiometer is", potentiometer 

> run 

potentiometer is 2026 

> _ 

 

Note that analog inputs and outputs are represented by integers in units of 

millivolts (mV). 

 

Note that almost all statements that can be run in a program can also be run in 

“immediate” mode, at the command prompt.  For example, after having run 

the above program, the “potentiometer” variable (and an0 pin) remain 

configured, so you can type: 

 
> print "potentiometer is now", potentiometer 

potentiometer is now 2027 

> _ 

 

This also demonstrates how you can examine variables (or pins!) at the 

command prompt during program debug. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 19 

2.4.3 Servo I/O Example 

The MCU can perform servo I/O as simply as digital or analog I/O. 

 

Please note that as of v1.84, the units of servo output pins was changed from 

centi-milliseconds (cms) to microseconds (us). 

 

The following program moves a servo on pin “dtin1” from one extreme 

(assumed calibrated to a 0.5ms pulse) to the other (assumed calibrated to a 

2.5ms pulse) over the period of a second, using the default servo frequency of 

45Hz: 

 
> new 

> servo 

45 

> 10 dim servo as pin dtin1 for servo output 

> 20 for servo = 500 to 2500 step 10 

> 30   sleep 50 ms 

> 40 next 

> run 

> _ 

 

Note that servo outputs are represented by integers in units of centi-

milliseconds (cms, v1.82-) or microseconds (us, v1.84+), so we‟re generating 

pulses at 45Hz, and they start at 0.5ms and increase to 2.5ms. 

 

Note that almost all statements that can be run in a program can also be run in 

“immediate” mode, at the command prompt.  For example, after having run 

the above program, the “servo” variable (and dtin1 pin) remain configured, so 

you can type the following to return the servo to the other extreme position: 

 
> let servo = 500 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 20 

2.4.4 Frequency I/O Example 

The MCU can perform frequency I/O as simply as digital or analog I/O. 

 

The following BASIC program generates a 1kHz square wave on a frequency 

output pin “dtin0” for 1 second: 

 
> new 

> 10 dim audio as pin dtin0 for frequency output 

> 20 let audio = 1000 

> 30 sleep 1 s 

> 40 let audio = 0 

> run 

> _ 

 

Note that frequency outputs are represented by integers in units of hertz (Hz). 

 

Note that almost all statements that can be run in a program can also be run in 

“immediate” mode, at the command prompt.  For example, after having run 

the above program, the “audio” variable (and dtin0 pin) remain configured, so 

you can type: 

 
> print "audio is now", audio 

audio is now 0 

> let audio = 2000 

> print "audio is now", audio 

audio is now 2000 

> _ 

 

This also demonstrates how you can examine or manipulate variables (or 

pins!) at the command prompt during program debug. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 21 

2.4.5  UART I/O Example 

The MCU can perform serial uart I/O as simply as digital or analog I/O. 

 

The following BASIC program configures a uart for loopback mode, transmits 

two characters and then asserts it receives them correctly: 

 
> new 

> 10 configure uart 0 for 9600 baud 7 data even parity loopback 

> 20 dim tx as pin utxd0 for uart output 

> 30 dim rx as pin urxd0 for uart input 

> 40 let tx = 48 

> 50 let tx = 49 

> 60 while tx do 

> 70 endwhile 

> 80 assert rx==48 

> 90 assert rx==49 

> 100 assert rx==0 

> 110 print "ok!" 

> run 

ok! 

> _ 

 

Line 10 configures uart 0 for 9600 baud loopback operation.  Lines 20 and 30 

configure the “utxd0” and “urxd0” pins for uart output and input, and creates 

two variable named “tx” and “rx” bound to those pins.  Line 40 sends a 

character („0‟, ASCII 48) out the uart and line 50 sends another („1‟, ASCII 

49).  Line 60 waits until all characters are sent (when “tx” reads back 0).  Line 

80 and 90 then receive two characters from the uart and assert they are what 

we sent.  Line 100 then asserts there are no more characters received (“rx” 

reads back 0). 

 

The uart can also be controlled using interrupts rather than polling.  The 

following program shows this: 

 
> 10 configure uart 0 for 9600 baud 7 data even parity loopback 

> 20 dim tx as pin utxd0 for uart output 

> 30 dim rx as pin urxd0 for uart input 

> 40 on uart 0 input do print "received", rx 

> 50 let tx = 48, tx=49 

> 60 sleep 1 s 

> run 

received 48 

received 49 

> _ 

 

Please note the pin variable method of accessing UART I/O should not be 
used on PIC32; see below. 
 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 22 

2.4.6 I2C Master I/O Example 

The MCU can perform serial I2C master I/O as simply as digital or analog 

I/O. 

 

The following BASIC program configures I2C to talk to a TI TMP102 

temperature sensor at address 0x48.  It displays the current temperature, in 

degrees Celsius: 

 
> list 

  10 dim r as byte, t[2] as byte 

  20 let r = 0 

  30 i2c start 0x48 

  40 i2c write r 

  50 i2c read t 

  60 i2c stop 

  70 print t[0] 

end 

> run 

25 

> _ 

 

Line 10 just dimensions a byte sized variable for the i2c command and a 2-

byte sized array for the response; note that I2C transfers are sized by the 

variables specified in the i2c statement.  Line 20 sets the command byte to 0.  

Line 30 starts the i2c transaction to the temperature sensor at address 0x48.  

Line 40 sends the command and line 50 reads the response.  Line 60 

completes the i2c transaction.  Finally, line 70 prints the temperature, in 

degrees Celsius. 

 

Note that i2c statements can also be run in immediate mode, allowing you to 

interactively discover the way your i2c peripherals work!!! 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 23 

2.4.7 QSPI Master I/O Example 

The MCU can perform serial QSPI master I/O as simply as digital or analog 

I/O. 

 

The following BASIC program configures QSPI to talk to the EzPort of 

another MCU via QSPI, assuming a clone cable is attached.  It enables flash 

memory writes and then queries the status register: 

 
> list 

  10 dim nrsti as pin scl for digital output 

  20 dim ncs as pin qspi_cs0 for digital output 

  30 dim cmd as byte, status as byte 

  40 rem pulse rsti* low with cs* 

  50 let ncs = 0, nrsti = 0, nrsti = 1 

  60 sleep 100 ms 

  70 let ncs = 1 

  80 rem send write enable command 

  90 let cmd = 0x6 

 100 let ncs = 0 

 110 qspi cmd 

 120 let ncs = 1 

 130 rem send read status register command 

 140 let cmd = 0x5 

 150 let ncs = 0 

 160 qspi cmd, status 

 170 let ncs = 1 

 180 print hex status 

end 

> run 

0x2 

> _ 

 

Line 10 configures a digital output pin to reset the target MCU.  Line 20 

configures a digital output pin to drive the MCU chip select, for use with 

EzPort.  Line 30 just dimensions two byte sized variables for use below; note 

that QSPI transfers are sized by the variables specified in the qspi statement.  

Lines 40 thru 70 reset the target MCU.  Lines 80 thru 120 send a one byte 

“write enable” command, with chip select.  Lines 130 thru 170 send a one 

byte “read status register” command and receive a one byte status, with chip 

select.  Line 180 prints the status, which shows writes are enabled but the 

configuration register is not yet loaded. 

 

Note that qspi statements can also be run in immediate mode, allowing you to 

interactively discover the way your qspi peripherals work!!! 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 24 

3 MCU Connections 

3.1 Interface 
When the StickOS is running the “heartbeat” LED will blink slowly; when the 

BASIC program in the MCU is running, the “heartbeat” LED will blink 

quickly.   

 

Holding the “autorun disable” switch depressed during power-on prevents 

autorun of the BASIC program.  It also disables "usbhost" mode (enabling 

CDC/ACM device mode), resets the serial console baud rate to 9600 baud, 

and overrides static IP address assignment in favor of DHCP, in an effort to 

allow you to regain control of the MCU. 

 

Use the help pins command to see the list of MCU pin names, and the 

pins command to see their LED and switch assignments. 

3.2 External Pins 
All MCU external pins support general purpose digital input or output. 

 

In addition, certain external pins can support analog input, analog output 

(PWM actually), frequency output, UART input, UART output, I2C master 

input/output, and/or QSPI master input/output. 

 

Use the help pins command to see the list of MCU pin names and their 

capabilities. 

 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 25 

3.3 Command-Line Transports 
StickOS is controlled via a terminal emulator program, such as Windows 

Hyper Terminal (typically found under Start -> All Programs -> Accessories -

> Communications -> Hyper Terminal), thru one of the following command-

line transports: 

 

 USB, via a CDC/ACM Virtual COM port 

 Ethernet, via a raw socket on port 1234 

 UART, via a physical COM port 

 

When using Hyper Terminal, if the USB or Ethernet connection is lost (such 

as when you unplug and re-plug in the MCU), press the “Disconnect” button 

followed by the “Call” button, to reconnect Hyper Terminal. 

 

Note that if you do not have Hyper Terminal (the XP version runs fine on 

Windows 7, BTW), my favorite terminal emulator program is “Tera Term”, 

available free from http://logmett.com/. 

 

On Mac you can also just use the "screen" command under Terminal. 

 

On Linux "minicom" works from http://alioth.debian.org/projects/minicom/. 

 

Note that as of Windows 7, I experience USB hangs with putty when typing 

or pasting text into the terminal emulator.  This appears to be a putty issue, 

as I experience the exact same hangs when talking to an FTDI chip, a physical 

serial port, or multiple CDC/ACM serial ports, and I don't experience the 

hangs with Hyper Terminal, SecureCRT, or Tera Term.  If you experience 

these hangs, I suggest you try Tera Term, available free from 

http://logmett.com/. 

http://logmett.com/
http://alioth.debian.org/projects/minicom/
http://logmett.com/


 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 26 

3.3.1 USB Transport 

Windows 

Before connecting the MCU to a Windows USB host computer, install the 

cpustick.inf file by saving it to a file, right-clicking on the file, and selecting 

"Install"; you can ignore warnings about an unsigned driver package -- the 

driver is straight from Microsoft, and only the INF file itself is unsigned.  The 

INF file allows Windows to bind a human readable name, "CPUStick", to the 

USB VID/PID presented to the host by StickOS.  The latest version of the 

cpustick.inf file can always be found at: http://www.cpustick.com/cpustick.inf 

cpustick.inf file 

 
 

When the MCU is then connected to the USB host computer, it will present a 
CDC/ACM Serial Port function to the host computer.  An appropriate driver 

(usbser.sys) will be loaded automatically from microsoft.com, if needed. 

 

[Version] 

Signature="$Windows NT$" 

Class=Ports 

ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318} 

Provider=%ProviderName% 

DriverVer=10/15/2009,1.0.0.0 

 

[MANUFACTURER] 

%ProviderName%=DeviceList, NTx86, NTamd64 

 

[DeviceList.NTx86] 

%CPUStick%=DriverInstall,USB\VID_0403&PID_A660 

 

[DeviceList.NTamd64] 

%CPUStick%=DriverInstall,USB\VID_0403&PID_A660 

 

[DefaultInstall] 

CopyInf=cpustick.inf 

 

[DriverInstall] 

include=mdmcpq.inf 

CopyFiles=FakeModemCopyFileSection 

AddReg=LowerFilterAddReg,SerialPropPageAddReg 

 

[DriverInstall.Services] 

include = mdmcpq.inf 

AddService = usbser, 0x00000002, LowerFilter_Service_Inst 

 

; This adds the serial port property tab to the device properties dialog 

[SerialPropPageAddReg] 

HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider" 

 

[Strings] 

ProviderName = "www.cpustick.com" 

CPUStick = "CPUStick" 

http://www.cpustick.com/cpustick.inf


 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 27 

Please note one Windows peculiarity with usbser.sys and CDC/ACM Serial 

Port functions...  If you have the virtual COM port held open by an application 

(such as a terminal emulator) and then disconnect and reconnect the MCU 

from the USB, when Windows re-creates the virtual COM port, it will not re-

create the \DosDevices symbolic link, leaving the new (i.e., working!) virtual 

COM port inaccessible.  To avoid this, close all applications using the virtual 

COM port before disconnecting and reconnecting the MCU from the USB (or 

close them after and then disconnect and reconnect the MCU from the USB 

again). 

 

Once the driver is loaded, a new virtual COM port (VCP) will be present on 

your system.  This virtual COM port will be visible in Device Manager with 

the "CPUStick" human readable name: 

 

 
 

At this point you can use Hyper Terminal to connect to the new virtual COM 

port.  Specify a new connection name, such as “CPUStick CDC”, and then 

select the new virtual COM port under Connect Using; the baud rate and data 

characteristics in Port Settings are ignored. 

 
Continue reading here. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 28 

Mac 

When the MCU is connected to the USB host computer, it will present a 

CDC/ACM Serial Port function to the host computer.  An appropriate driver 

will be loaded. 

 

Once the driver is loaded, a new virtual COM port (VCP) will be present on 

your system.  This virtual COM port will be visible in About This Mac -> 

More Info... -> Hardware -> USB -> USB Bus with the "CPUStick" human 

readable name: 

 

 
Note the "Location ID" above. 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 29 

At this point you can use the Terminal program with the "screen" command to 

connect to the new virtual COM port.  Specify a new connection name, such 

as “CPUStick CDC”, and then enter the "screen" command and the new 

virtual COM port under "Run command"; the baud rate and data 

characteristics are ignored. 

 

 
Continue reading here. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 30 

Linux 

Unfortunately, it seems distributions are different naming their device files.  

On mine, the dev file is very easy to find -- it has the name ACM in it, like 

/dev/ttyACM0 -- that is because StickOS presents a CDC/ACM function.  The 

actual number will likely depend on the exact physical USB port you use. 

 

At this point you can use "minicom" to connect to the new virtual COM port.  

"<Ctrl-A>Z" gets you to a help screen, and "OA" allows you to specify the 

serial device file; the baud rate and data characteristics are ignored. 

 

 
Continue reading here. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 31 

 

All 

Press <Enter> when you are connected and you should see the command 

prompt: 

 

 
 

You are now ready to enter StickOS commands and/or BASIC program 

statements! 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 32 

3.3.2 USB Host Mode 

If a UART Transport is used, the USB interface on selected MCUs can be 

configured into host mode to create a trivial USB data logging mechanism to 

an external USB flash drive. 

 

The state of USB Host mode can be displayed (along with whether a USB 

flash drive is attached or not), turned on, or turned off with the commands: 

 
 usbhost 

 usbhost on 

 usbhost off 

 

This takes effect after the next MCU reset. 

 

You can override the "usbhost" mode and revert to device mode by holding 

the “autorun disable” switch depressed during power-on. 

 

When USB host mode is turned on and an external USB flash drive is attached 

and supplied with appropriate VBUS power, all StickOS “print” statement 

output will be appended to the file x:\stickos.log in the USB flash 

drive, where x: is your drive letter. 

 

The write-back cache is flushed every second, so you must wait one second 

after the last “print” statement before disconnecting the external USB flash 

drive. 

  



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 33 

3.3.3 UART Transport 

Find the physical COM port in Device Manager: 

 

 
 

At this point you can use Hyper Terminal to connect to the physical COM 

port.  Specify a new connection name, such as “cpustick”, and then select the 

physical COM port under Connect Using; set the baud rate and data 

characteristics in Port Settings to: 

 

Bits per second: 9600 

Data bits: 8 

Parity:  None 

Stop bits: 2 

Flow control:  Xon/Xoff 

 

Press <Enter> when you are connected and you should see the command 

prompt: 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 34 

 
 

You are now ready to enter StickOS commands and/or BASIC program 

statements! 

 

The UART baud rate can be displayed or changed persistent with the 

commands: 

 
 baud 

 baud rate 

 

This takes effect after the next MCU reset. 

 

You can override the changed baud rate and revert to 9600 baud by holding 

the “autorun disable” switch depressed during power-on. 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 35 

3.3.4 Ethernet Transport 

The MCU will acquire an IP address from DHCP (query your DHCP server to 

figure out which IP address it got). 

 

At this point you can use Hyper Terminal to connect to the new IP address on 

TCP port 1234.  Specify a new connection name, such as “52233”, and then 

specify “TCP/IP” under Connect Using; then specify the new IP address as 

Host address and 1234 as Port number. 

 

Press <Enter> when you are connected and you should see the command 

prompt: 

 

 
 

You are now ready to enter StickOS commands and/or BASIC program 

statements! 

 

You can subsequently use the "ipaddress" command to set a static IP address 

persistently.  This takes effect after the next MCU reset. 

 

You can override the static IP address and revert to DHCP by holding the 

“autorun disable” switch depressed during power-on. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 36 

4 StickOS 
StickOS supports a BASIC programming environment with integer 

variable/array and string support and block structured programming and 

subroutine support, where external pins are bound to special “pin variables” 

for manipulation or examination. 

 

External pins can be dynamically configured as one of: 

 

o digital input or output, 

o analog input or output (PWM actually), 

o servo output, 

o frequency output, 

o uart input or output, 

o i2c master input/output, or 

o qspi master input/output 

o 4-bit HD44780-compatible LCD output 

o 4x4 scanned keypad input 

 

BASIC programs as well as “persistent parameters” can be stored in non-

volatile flash memory; volatile variables as well as recent code edits (up to the 

next “save” command) are stored in RAM. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 37 

4.1 First Boot & Pin Assignments 
When StickOS first boots, certain pin assignments default to “standard” board 

layouts.  Since StickOS runs on any MCU, independent of its board layout, 

you may need to customize these pin assignments when you first log in if your 

board is different. 

 

The following pin assignments are supported: 

 
assign function 
heartbeat indicates the position of the pin attached to 

the “heartbeat” LED (digital output). 
safemode* indicates the position of the safemode pin 

attached to the “autorun disable” switch 

(digital input). 
qspi_cs* indicates the position of the cs* pin used for 

QSPI transfers for clone and zigflea 

operations. 
clone_rst* indicates the position of the rst* pin used 

when cloning firmware to another MCU via 

EzPort (digital output) 
zigflea_rst* indicates the position of the rst* pin used to 

reset the MC1320x ZigFlea Transceiver 

(digital output) 
zigflea_attn* indicates the position of the attn* pin used to 

wake the MC1320x ZigFlea Transceiver 

(digital output) 

 

Note that this signal is only needed if the 

MC1320x circuit uses it; StickOS does not 

need it 
zigflea_rxtxen indicates the position of the rxtxen pin used 

to activate the MC1320x ZigFlea Transceiver 

(digital output) 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 38 

 

lcd_d4 (v1.82+) HD44780-compatible LCD data bit (lsb) 

lcd_d5 (v1.82+) HD44780-compatible LCD data bit 

lcd_d6 (v1.82+) HD44780-compatible LCD data bit 

lcd_d7 (v1.82+) HD44780-compatible LCD data bit (msb) 

lcd_en (v1.82+) HD44780-compatible LCD enable 

lcd_rs (v1.82+) HD44780-compatible LCD register select 

kbd_s0 (v1.82+) 4x4 scanned keypad scan line (lsb) 

kbd_s1 (v1.82+) 4x4 scanned keypad scan line 

kbd_s2 (v1.82+) 4x4 scanned keypad scan line 

kbd_s3 (v1.82+) 4x4 scanned keypad scan line (msb) 

kbd_r0 (v1.82+) 4x4 scanned keypad return line (lsb) 

kbd_r1 (v1.82+) 4x4 scanned keypad return line 

kbd_r2 (v1.82+) 4x4 scanned keypad return line 

kbd_r3 (v1.82+) 4x4 scanned keypad return line (msb) 

 

The default pin assignments may be displayed with the command: 

 
 pins 

 

An individual pin assignment may be displayed with the command: 

 
 pins assign 

 

An individual pin may be reassigned persistently in flash with the command: 

 
 pins assign none 

 pins assign pinname 

 

Use the following command to see a list of pin names for the MCU: 

 
 help pins 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 39 

Examples 
> help pins 

pin names: 

    0         1         2         3        4     5        6        7 

  --------  --------- --------- -------- ----- -------- -------- ------+ 

  an0       an1       an2       an3      an4   an5      an6      an7   | AN 

  scl       sda                                                        | AS 

            irq1*                        irq4*                   irq7* | NQ 

  qspi_dout qspi_din  qspi_clk  qspi_cs0       qspi_cs2 qspi_cs3       | QS 

  dtin0     dtin1     dtin2     dtin3                                  | TC 

  utxd0     urxd0     urts0*    ucts0*                                 | UA 

  utxd1     urxd1     urts1*    ucts1*                                 | UB 

 

all pins support general purpose digital input/output 

an? = potential analog input pins (mV) 

dtin? = potential analog output (PWM) pins (mV) 

dtin? = potential servo output (PWM) pins (us) 

dtin? = potential frequency output pins (Hz) 

urxd? = potential uart input pins (received byte) 

utxd? = potential uart output pins (transmit byte) 

> pins 

heartbeat dtin3 

safemode* irq1* 

qspi_cs* qspi_cs0 

clone_rst* scl 

zigflea_rst* an2 

zigflea_attn* an3 

zigflea_rxtxen an5 

> pins heartbeat dtin2 

> pins heartbeat 

dtin2 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 40 

4.2 Command-Line 
In the command and statement specifications that follow, the following 

nomenclatures are used: 

 
bold literal text; enter exactly as shown 
italics parameterized text; enter actual parameter value 
(alternate1| 

 alternate2| 

 ...) 

alternated text; enter exactly one alternate value 

regular displayed by StickOS 
<key> press this key 

 

To avoid confusion with array indices (specified by [...]), optional text will 

always be called out explicitly, either by example or by text, rather than 

nomenclated with the traditional [...]. 

 

When StickOS is controlled with an ansi or vt100'ish terminal emulator, 

command-line editing is enabled via the terminal keys, as follows: 

 

key function 
← move cursor left 

→ move cursor right 

↑ recall previous history line 

↓ recall next history line 
<Home> move cursor to start of line 
<End> move cursor to end of line 
<Backspace> delete character before cursor 
<Delete> delete character at cursor 
<Ctrl-C> clear line (also stops running program) 
<Ctrl-D> disconnect from remote node (zigflea) 
<Enter> enter line to StickOS 

 

If you enter a command or statement in error, StickOS will indicate the 

position of the error, such as: 

 
> print i forgot to use quotes 

error -   ^ 

> _ 

 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 41 

4.2.1  StickOS Commands 

StickOS commands are used to control the StickOS BASIC program.  Unlike 

BASIC program statements, StickOS commands cannot be entered into the 

StickOS BASIC program with a line number. 

4.2.2 Getting Help 

The help command displays the top level list of help topics: 

 
help 

 

To get help on a subtopic, use the command: 

 
help subtopic 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 42 

Examples 
> help  

for more information: 

  help about 

  help commands 

  help modes 

  help statements 

  help blocks 

  help devices 

  help expressions 

  help strings 

  help variables 

  help pins 

  help clone 

  help zigflea 

 

see also: 

  http://www.cpustick.com 

> help commands 

<Ctrl-C>                      -- stop program 

auto <line>                   -- automatically number program lines 

clear [flash]                 -- clear ram [and flash] variables 

cls                           -- clear terminal screen 

cont [<line>]                 -- continue program from stop 

delete ([<line>][-][<line>]|<subname>) -- delete program lines 

download <slave Hz>           -- download flash to slave MCU 

dir                           -- list saved programs 

edit <line>                   -- edit program line 

help [<topic>]                -- online help 

list ([<line>][-][<line>]|<subname>) -- list program lines 

load <name>                   -- load saved program 

memory                        -- print memory usage 

new                           -- erase code ram and flash memories 

profile ([<line>][-][<line>]|<subname>) -- display profile info 

purge <name>                  -- purge saved program 

renumber [<line>]             -- renumber program lines (and save) 

reset                         -- reset the MCU! 

run [<line>]                  -- run program 

save [<name>]                 -- save code ram to flash memory 

undo                          -- undo code changes since last save 

upgrade                       -- upgrade StickOS firmware! 

uptime                        -- print time since last reset 

 

for more information: 

  help modes 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 43 

4.2.3 Entering Programs 

To enter a statement into the BASIC program, precede it with a line number 

identifying its position in the program: 

 
line statement 

 

If the specified line already exists in the BASIC program, it is overwritten. 

 

To delete a statement from the BASIC program, enter just its line number: 

 
line 

 

To edit an existing line of the BASIC program via command-line editing, use 

the command: 

 
 edit line 

 

A copy of the unchanged line is also stored in the history buffer. 

 

Note that statements are initially entered into a RAM buffer to avoid excessive 

writes to flash memory, and therefore can be lost if the MCU is reset or loses 

power before the program has been saved.  When a program is run, the (newly 

edited) statements in RAM are seamlessly merged with the (previously saved) 

statements in flash memory, to give the appearance of a single “current 

program”, at a slight performance penalty.  When the newly edited program is 

subsequently saved again, the merged program is re-written to flash and the 

RAM buffer is cleared, resulting in maximum program performance.  If the 

RAM buffer fills during program entry, an “auto save” is performed to 

accelerate the merging process. 

 

To automatically number program lines as you enter them, use the command: 

 
 auto 

auto line 

 

Enter two blank lines to terminate automatic line numbering. 

 
Note that you can edit a BASIC program in a text editor, without line 

numbers, and then paste it into the terminal emulator window with automatic 

line numbering, and then enter two blank lines to terminate automatic line 

numbering. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 44 

 

To list the BASIC program, or a range of lines from the BASIC program, use 

the command: 

 
 list 

list line 

list -line 

list line- 

list line-line 

 

Alternately, you can list an entire subroutine by name with the command: 

 
list subname 

 

To set the listing indent mode, use the command: 

 
indent (on|off) 

 

To display the listing indent mode, use the command: 

 
indent 

 

If the listing indent mode is on, nested statements within a block will be 

indented by two characters, to improve program readability. 

 

To set the line numbering mode, use the command: 

 
numbers (on|off) 

 

To display the line numbering mode, use the command: 

 
numbers 

 

Note that unnumbered listings are useful to paste back in to the “auto” 

command which automatically supplies line numbers to program statements. 

 

To delete a range of lines from the BASIC program, use the command: 

 
delete line 

delete -line 

delete line- 

delete line-line 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 45 

Alternately, you can delete an entire subroutine by name with the command: 

 
delete subname 

 

To undo changes to the BASIC program since it was last saved (or 

renumbered, or new'd, or loaded), use the command: 

 
undo 

 

To save the BASIC program permanently to flash memory, use the command: 

  
save 

 

Note that any unsaved changes to the BASIC program will be lost if the MCU 

is reset or loses power. 

 

To renumber the BASIC program by 10's and save the BASIC program 

permanently to flash memory, use the command: 

 
renumber 

 

To delete all lines from the BASIC program, use the command: 

 
new 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 46 

Examples 
> 10 dim a 

> 20 for a = 1 to 10 

> auto 30 

> 30 print a 

> 40 next 

> 50 

> 60 

> save 

> list 20-40 

  20 for a = 1 to 10 

  30   print a 

  40 next 

end 

> delete 20-40 

> list 

  10 dim a 

end 

> undo 

> list 

  10 dim a 

  20 for a = 1 to 10 

  30   print a 

  40 next 

end 

> 1 rem this is a comment 

> list 

   1 rem this is a comment 

  10 dim a 

  20 for a = 1 to 10 

  30   print a 

  40 next 

end 

> renumber 

> list 

  10 rem this is a comment 

  20 dim a 

  30 for a = 1 to 10 

  40   print a 

  50 next 

end 

> new 

> list 

end 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 47 

4.2.4 Running Programs 

To run the BASIC program, use the command: 

 
run 

 

Alternately, to run the program starting at a specific line number, use the 

command: 

 
run line 

 

To stop a running BASIC program, press: 

 
<Ctrl-C> 

 

To continue a stopped BASIC program, use the command: 

 
cont 

 

Alternately, to continue a stopped BASIC program from a specific line 

number, use the command: 

 
cont line 

 

To set the autorun mode for the saved BASIC program, use the command: 

 
autorun (on|off) 

 

This takes effect after the next MCU reset. 

 

To display the autorun mode for the saved BASIC program, use the command: 

 
autorun 

 

If the autorun mode is on, when the MCU is reset, it will start running the 

saved BASIC program automatically. 

 

Note that any unsaved changes to the BASIC program will be lost if the MCU 

is reset or loses power. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 48 

Examples 
> 10 dim a 

> 20 while 1 do 

> 30 let a = a+1 

> 40 endwhile 

> save 

> run 

<Ctrl-C> 

STOP at line 40! 

> print a 

5272 

> cont 

<Ctrl-C> 

STOP at line 30! 

> print a 

11546 

> autorun 

off 

> autorun on 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 49 

4.2.5 Loading and Storing Programs 

The “current program” has no name and is saved and run by default.  In 

addition to the current program, StickOS can load and store a number of 

named BASIC programs in a flash filesystem.  Named programs are simply 

copies of the current program that can be retrieved at a later time, but are 

otherwise unaffected by all other StickOS commands than these. 

 

To display the list of currently stored named programs, use the command: 

 
dir 

 

To store the current program under the specified name, use the command: 

 
save name 

 

To load a named stored program to become the current program, use the 

command: 

 
load name 

 

To purge (erase) a stored program, use the command: 

 
purge name 

Examples 
> 10 dim a 

> 20 while 1 do 

> 30 let a = a+1 

> 40 endwhile 

> dir 

> save spinme 

> dir 

spinme 

> new 

> list 

end 

> load spinme 

> list 

  10 dim a 

  20 while 1 do 

  30   let a = a+1 

  40 endwhile 

end 

> purge spinme 

> dir 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 50 

4.2.6 Debugging Programs 

There are a number of techniques you can use for debugging StickOS BASIC 

programs. 

 

The simplest debugging technique is simply to insert print statements in the 

program at strategic locations, and display the values of variables. 

 

A more powerful debugging technique is to insert one or more breakpoints in 

the program, with the following statement: 

 
line stop 

 

When program execution reaches line, the program will stop and then you can 

use immediate mode to display or modify the values of any and all variables. 

 

To continue a stopped BASIC program, use the command: 

 
cont 

cont line 

 

An even more powerful debugging technique is to insert one or more 

conditional breakpoints in the program, with the following statement: 

 
line assert expression 

 

When the program execution reaches line, expression is evaluated, and if it is 

false (i.e., 0), the program will stop and you can use immediate mode to 

display or modify the values of any and all variables. 

 

Again, to continue a stopped BASIC program, use the command: 

 
cont 

cont line 

 

The most powerful debugging technique, though also the most expensive in 

terms of program performance, is to insert a watchpoint expression in the 

program, with the following statement  

 
line on expression do statement 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 51 

The watchpoint expression is re-evaluated before every line of the program is 

executed; if the expression transitions from false to true, the watchpoint 

statement handler runs. 

 

When debugging, the statement handler is typically a “stop” statement, such 

as: 

 
line on expression do stop 

 

This will cause the program to stop as soon as the specified expression 

becomes true, such as when a variable or pin takes on an incorrect value. 

 

To set the smart watchpoint mode, which dramatically reduces watchpoint 

overhead at a slight delay of input pin sensitivity, use the command: 

 
watchsmart (on|off) 

 

To display the smart watchpoint mode, use the command: 

 
watchsmart 

 

At any time when a program is stopped, you can enter BASIC program 

statements at the command-line with no line number and they will be executed 

immediately; this is called "immediate mode".  This allows you to display the 

values of variables, with an immediate mode statement like: 

 
print expression 

 

It also allow you to modify the value of variables, with an immediate mode 

statement like: 

 
let variable = expression 

 

Note that if an immediate mode statement references a pin variable, the live 

MCU pin is examined or manipulated, providing a very powerful debugging 

technique for the embedded system itself! 

 

Thanks to StickOS‟s transparent line-by-line compilation, you can also edit a 

stopped BASIC program and then continue it, either from where you left off 

or from another program location! 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 52 

When the techniques discussed above are insufficient for debugging, two 

additional techniques exist -- single-stepping and tracing. 

 

To set the single-step mode for the BASIC program, use the command: 

 
step (on|off) 

 

To display the single-step mode for the BASIC program, use the command: 

 
step 

 

While single-step mode is on, the program will stop execution after every 

statement, as if a stop statement was inserted after every line. 

 

Additionally, while single-step mode is on, pressing <Enter> (essentially 

entering what would otherwise be a blank command) is the same as the cont 

command. 

 

To set the trace mode for the BASIC program, use the command: 

 
trace (on|off) 

 

To display the trace mode for the BASIC program, use the command: 

 
trace 

 

While trace mode is on, the program will display all executed lines and 

variable modifications while running.  

Examples 
> 10 dim a, sum 

> 20 for a = 1 to 10000 

> 30 let sum = sum+a 

> 40 next 

> 50 print sum 

> run 

50005000 

> 25 stop 

> run 

STOP at line 25! 

> print a, sum 

1 0 

> cont 

STOP at line 25! 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 53 

> print a, sum 

2 1 

> 25 assert a != 5000 

> cont 

assertion failed 

STOP at line 25! 

> print a, sum 

5000 12497500 

> cont 

50005000 

> delete 25 

> trace 

off 

> step 

off 

> trace on 

> step on 

> list 

  10 dim a, sum 

  20 for a = 1 to 10000 

  30   let sum = sum+a 

  40 next 

  50 print sum 

end 

> run 

  10 dim a, sum 

STOP at line 10! 

> cont 

  20 for a = 1 to 10000 

    let a = 1 

STOP at line 20! 

> <Enter> 

  30   let sum = sum+a 

    let sum = 1 

STOP at line 30! 

> <Enter> 

  40 next 

    let a = 2 

STOP at line 40! 

> <Enter> 

  30   let sum = sum+a 

    let sum = 3 

STOP at line 30! 

> _ 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 54 

4.2.7 Other Commands 

To clear BASIC program variables, and reset all pins to digital input mode, 

use the command: 

 
clear 

 

This command is also used after a stopped program has defined program 

variables and before redefining program variables in “immediate” mode, to 

avoid duplicate definition errors without having to erase the program with a 

“new” command. 

 

To clear BASIC program variables, including flash parameters, use the 

command: 

 
clear flash 

 

To display the StickOS memory usage, use the command: 

 
memory 

 

To reset the MCU as if it was just powered up, use the command: 

 
reset 

 

Note that the reset command inherently breaks the USB or Ethernet 

connection between the MCU and host computer; press the “Disconnect” 

button followed by the “Call” button, to reconnect Hyper Terminal. 

 

To clear the terminal screen, use the command: 

 
cls 

 

To display the time since the MCU was last reset, use the command: 

 
uptime 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 55 

Examples 
> memory 

  0% ram code bytes used 

  0% flash code bytes used 

  0% ram variable bytes used 

  0% flash parameter bytes used 

  0% variables used 

> 10 dim a[100] 

> 20 rem this is a loooooooooooooooooooooooooooooooooooooong line 

> run 

> memory 

  4% ram code bytes used (unsaved changes!) 

  0% flash code bytes used 

 19% ram variable bytes used 

  0% flash parameter bytes used 

  1% variables used  

> save 

> memory 

  0% ram code bytes used 

  1% flash code bytes used 

 19% ram variable bytes used 

  0% flash parameter bytes used 

  1% variables used 

> clear 

> memory 

  0% ram code bytes used 

  1% flash code bytes used 

  0% ram variable bytes used 

  0% flash parameter bytes used 

  0% variables used 

> list 

  10 dim a[100] 

  20 rem this is a loooooooooooooooooooooooooooooooooooooong line 

end 

> uptime 

1d 15h 38m 

> reset 

_ 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 56 

4.3  BASIC Program Statements 
BASIC Program statements are typically entered into the StickOS BASIC 

program with an associated line number, and then are executed when the 

program runs. 

 

Most BASIC program statements can also be executed in immediate mode at 

the command prompt, without a line number, just as if the program had 

encountered the statement at the current point of execution. 

4.3.1 Variable Declarations 

All variables must be dimensioned prior to use.  Accessing undimensioned 

variables results in an error and a value of 0. 

Simple RAM variables 

Simple RAM variables can be dimensioned as either integer (32 bits, signed, 

by default), short (16 bits, unsigned), or byte (8 bits, unsigned) with the 

following statements: 

 
dim var 

dim var as (short|byte) 

 

Multiple variables can be dimensioned in the same statement, by separating 

them with commas: 

 
 dim var [as ...], var [as ...], ... 

 

If no variable size (short or byte) is specified in a dimension statement, 

integer is assumed; if no as ... is specified, a RAM variable is assumed. 

Array RAM variables 

Array RAM variables can be dimensioned with the following statements: 

 
dim var[n] 

dim var[n] as (short|byte) 

 

Note that simple variables are really just array variables with only a single 

array element in them, so the array element var[0] is the same as var, and 

the dimension dim var[1] is the same as dim var. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 57 

String RAM variables 

String RAM variables can be dimensioned with the following statements: 

 
dim var$[n] 

 

Where n is the length of the array.  Array indices start at 0 and end at the 

length of the array minus one. 

  

Note also that string variables are really just a nul-terminated view into a byte 

array variable. 

MCU register variables 

Variables can also be dimensioned as MCU register variables at absolute 

addresses with the following statements: 

 
 dim varabs at address addr 

 

 dim varabs as (short|byte) at address addr 

 

 dim varabs[n] at address addr 

 

 dim varabs[n] as (short|byte) at address addr 

 

Note that you can trivially crash your MCU by accessing registers incorrectly. 

Persistent integer (32 bits) flash variables 

Variables can also be dimensioned as persistent integer (32 bits) flash 

variables with the following statements: 

  
dim varflash as flash 

 

dim varflash[n] as flash 

 

Persistent flash variables retain their values from one run of a program to 

another (even if power is lost between runs), unlike RAM variables which are 

cleared to 0 at the start of every run. 

 

Note that since flash memory has a finite life (100,000 writes, typically), 

rewriting a flash variable should be a rare operation reserved for program 

configuration changes, etc.  To attempt to enforce this, StickOS delays all 

flash variable modifications by 0.5 seconds (the same as all other flash 

memory updates). 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 58 

 

Pin variables 

Finally, variables can be dimensioned as pin variables, used to manipulate or 

examine the state of MCU I/O pins with the following statements: 

 
dim varpin as pin pinname for (digital|analog|frequency|uart)\ 

 (input|output) [debounced] [inverted][open_drain] 

 

dim varpin[n] as pin pinname for (digital|analog|frequency|uart)\ 

 (input|output) [debounced] [inverted][open_drain] 

 

These are discussed in detail below, in the sections on Digital I/O, Analog I/O, 

Servo I/O, Frequency I/O, and UART I/O. 

 

See also: ZigFlea Remote Variables 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 59 

Examples 
> new 

> 10 dim array[4], b, volatile 

> 20 dim led as pin dtin0 for digital output 

> 30 dim potentiometer as pin an0 for analog input 

> 40 dim persistent as flash 

> 50 for b = 0 to 3 

> 60   let array[b] = b*b 

> 70 next 

> 80 for b = 0 to 3 

> 90   print array[b] 

> 100   let led = !led 

> 110 next 

> 120 print "potentiometer is", potentiometer 

> 130 print "volatile is", volatile 

> 140 print "persistent is", persistent 

> 150 let persistent = persistent+1 

> run 

0 

1 

4 

9 

potentiometer is 1745 

volatile is 0 

persistent is 0 

> run 

0 

1 

4 

9 

potentiometer is 1745 

volatile is 0 

persistent is 1 

> dim pcntr0 as short at address 0x40150004 

> print pcntr0 

5338 

> print pcntr0 

2983 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 60 

4.3.2 System Variables 

The following system variables may be used in expressions or simply with 

“print” statements to examine internal system state.  These variables are all 

read-only. 

 

analog (v1.82+)  analog supply millivolts  

getchar most recent console character 

keychar (v1.82+)  most recent keypad character 

nodeid zigflea nodeid 
msecs number of milliseconds since boot 
seconds number of seconds since boot 
ticks number of ticks since boot 
ticks_per_msec number of ticks per millisecond 

Examples 
> print seconds, ticks, ticks/1000 

2640 10562152 10562 

> 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 61 

4.3.3 Variable Assignments 

Simple variables are assigned with the following statement: 

 
let variable = expression 

 

If the variable represents an output "pin variable", the corresponding MCU 

output pin is immediately updated. 

 

Similarly, array variable elements are assigned with the following statement: 

 
let variable[expression] = expression 

 

Where the first expression evaluates to an array index between 0 and the 

length of the array minus one, and the second expression is assigned to the 

specified array element. 

 

String variables are assigned with the following statement: 

 
let variable$ = string 

 

Multiple variables may be assigned in a single statement by separating them 

with commas: 

 
let var1 = expr1, var2 = expr2, ... 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 62 

Examples 
> 10 dim simple, array[4] 

> 20 while simple<4 do 

> 30   let array[simple] = simple*simple 

> 40   let simple = simple+1 

> 50 endwhile 

> 60 for simple = 0 to 3 

> 70   print array[simple] 

> 80 next 

> run 

0 

1 

4 

9 

> new 

> 10 dim a$[20] 

> 20 let a$="hello"+" "+"world!" 

> 30 print a$ 

> run 

hello world! 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 63 

4.3.4  Expressions 

StickOS BASIC expressions are very similar to C expressions, and follow 

similar precedence and evaluation order rules. 

 

The following operators are supported, in order of decreasing precedence: 

 
n decimal constant 
0xn hexadecimal constant 
'c' character constant 
variable simple variable 
variable[expression] array variable element 
variable#               length of array or string 
(  ) grouping 
!  ~ logical not, bitwise not 
*   /   % times, divide, mod 
+   - plus, minus 
>>  << shift right, left 
<=  <  >=  > inequalities 
==  != equal, not equal 
|   ^   & bitwise or, xor, and 
||  ^^  && logical or, xor, and 

 

The plus and minus operators can be either binary (taking two arguments, one 

on the left and one on the right) or unary (taking one argument on the right); 

the logical and bitwise not operators are unary.  All binary operators evaluate 

from left to right; all unary operators evaluate from right to left. 

 

Note that the # operator evaluates to the length of the array or string variable 

whose name precedes it. 

 

Logical and equality/inequality operators, above, evaluate to 1 if true, and 0 if 

false.  For conditional expressions, any non-0 value is considered to be true, 

and 0 is considered to be false. 

 

If the expression references an input "pin variable", the corresponding MCU 

input pin is sampled to evaluate the expression. 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 64 

Note that when StickOS parses an expression and later displays it (such as 

when you enter a program line and then list it), what you are seeing is a de-

compiled representation of the compiled code, since only the compiled code is 

stored, to conserve RAM and flash memory.  So superfluous parenthesis (not 

to mention spaces) will be removed from the expression, based on the 

precedence rules above. 

Examples 
> 10 print 2*(3+4) 

> 20 print 2+(3*4) 

> list 

  10 print 2*(3+4) 

  20 print 2+3*4 

end 

> run 

14 

14 

> print 3+4 

7 

> print -3+2 

-1 

> print !0 

1 

> print 5&6 

4 

> print 5&&6 

1 

> print 3<5 

1 

> print 5<3 

0 

> print 3<<1 

6 

> dim a[7] 

> print a# 

7 

> _ 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 65 

4.3.5 Strings 

StickOS supports string variables as a nul-terminated views into byte arrays. 

 

A string variable may be declared, with a maximum length n, with: 

 
dim var$[n] 

 

A string may then be assigned with: 

 
let variable$ = string 

 

Where string is an expression composed of one or more of: 

 
"literal" literal string 
variable$ variable string 
variable$[start:length] variable substring 
+ string concatenation operator 

 

A string may be tested in a conditional statement with a condition of the form: 

 
if string relation string then 

while string relation string do 

until string relation string 

 

Where relation is one of: 

 
<=  <  >=  > inequalities 
==  != equal, not equal 
~  !~ contains, does not contain 

 

The current length of a string can be represented in an integer expression by: 

 
variable# 

 

Strings may also be explicitly specified in dim, input, let, print, and 

vprint statements. 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 66 

Examples 
> new 

> 10 dim i, a$[10] 

> 20 input a$ 

> 30 for i = 0 to a#-1 

> 40 print a$[i:1] 

> 50 next 

> run 

? hello 

h 

e 

l 

l 

o 

> new 

> 10 dim a$[10] 

> 20 input a$ 

> 30 if a$ ~ "y" then 

> 40 print "yes" 

> 50 else 

> 60 print "no" 

> 70 endif 

> run 

? aya 

yes 

> run 

? aaa 

no 

> 

 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 67 

4.3.6 Print Statements 

While the MCU is connected to the host computer, print statements can be 

observed on the Hyper Terminal console window. 

 

Print statements can be used to print integer expressions, using either a 

decimal or hexadecimal output radix, or printing raw ASCII bytes: 

 
print [dec|hex|raw] expression [;] 

 

Or strings: 

 
print string 

 

Or various combinations of both: 

 
print string, [dec|hex|raw] expression, ... [;] 

 

If the expression specifies an array, its entire array contents are printed.  If 

the expression references an input "pin variable", the corresponding MCU 

input pin is sampled to evaluate the expression. 

 

A trailing semi-colon (;) suppresses the carriage-return/linefeed that usually 

follows each printed line. 

 

Note that when the MCU is disconnected from the host computer, print 

statement output is simply discarded. 

Examples 
> print "hello world" 

hello world 

> print 57*84 

4788 

> print hex 57*84 

0x12b4 

> print 9, "squared is", hex 9*9 

9 squared is 0x51 

> dim a[2] 

> print a 

0 0 

> print 1; 

1> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 68 

4.3.7 Variable Print Statements 

Variable print statements can be used to convert strings to integers and vice 

versa, as well as integers from decimal to hexadecimal radix, etc.  Basically, 

variable print statements are identical to print statements, except rather than 

printing the result to the console, the result is "printed" to a variable. 

 

Variable print statements can be used to print integer expressions, using either 

a decimal or hexadecimal output radix, or printing raw ASCII bytes: 

 
vprint variable[$] = [dec|hex|raw] expression 

 

Or strings: 

 
vprint variable[$] = string 

 

Or various combinations of both: 

 
vprint variable[$] = string, \ 

  [dec|hex|raw] expression, ... 

 

In all cases, the resulting output is assigned to the specified integer or string 

variable.  If a type conversion error occurs (such as assigning a non-integer 

string to an integer variable), program execution stops. 

Examples 
> clear 

> dim a, b$[10] 

> let b$="123" 

> vprint a = b$[0:2]+"4" 

> print a 

124 

> vprint b$ = "hello", a 

> print b$ 

hello 124 

> _ 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 69 

4.3.8 Input Statements 

While the MCU is connected to the host computer, input statements can be 

serviced from the Hyper Terminal console window. 

 

Input statements can be used to input integer expressions, using either a 

decimal or hexadecimal output radix, or input raw ASCII bytes: 

 
input [dec|hex|raw] variable[$], ... 

 

If the variable specifies an array (or a string), the entire array (or string) 

contents are input.  If the expression references an output "pin variable", 

the corresponding MCU output pin is immediately updated. 

 

When the input statement is serviced, StickOS prints a prompt to the console: 

 
? _ 

 

And the user enters integer or string values, as appropriate, followed by the 

<Enter> key. 

 

Note that while waiting for input, BASIC interrupt handlers continue to run. 

 

Also, the most recent console input character is available in the system 

variable "getchar", which you will typically use as "getchar$". 

 

Note that when the MCU is disconnected from the host computer, input 

statements hang the program. 

Examples 
> new 

> 10 dim a, b$[20] 

> 20 input a, b$ 

> 30 print a*2, b$ 

> run 

? 12 hello world! 

24 hello world! 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 70 

4.3.9 Read/Data Statements 

A program can declare read-only data in its code statements, and then 

consume the data at run-time. 

 

To declare the read-only data, use the data statement as many times as 

needed: 

 
data n 

data n, n, ... 

 

To consume data values and assign them to variables at runtime, use the read 

statement: 

 
read variable 

read variable, variable, ... 

 

If a read is attempted when no more data exists, the program stops with an 

"out of data" error. 

 

A line may be labeled and the current data consumer pointer may be moved to 

a specific (labeled) line with the statements: 

 
 label label 

 restore label 

Examples 
> 10 dim a, b 

> 20 data 1, 2, 3 

> 30 data 4 

> 40 data 5, 6 

> 50 data 7 

> 60 while 1 do 

> 70   read a, b 

> 80   print a, b 

> 90 endwhile 

> 100 data 8 

> run 

1 2 

3 4 

5 6 

7 8 

out of data 

STOP at line 70! 

> _ 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 71 

4.3.10 Conditional Statements 

Non-looping conditional statements are of the form: 

 
if expression then 

 statements 

elseif expression then 

 statements 

else 

 statements 

endif 

 

Where statements is one or more program statements and the elseif and 

else clauses (and their corresponding statements) are optional. 

 

Alternately, the string form of this statement is: 

 
if string relation string then 

 statements 

elseif string relation string then 

 statements 

else 

 statements 

 endif 

Examples 
> 10 dim a 

> 20 for a = -4 to 4 

> 30   if !a then 

> 40     print a, "is zero" 

> 50   elseif a%2 then 

> 60     print a, "is odd" 

> 70   else 

> 80     print a, "is even" 

> 90   endif 

> 100 next 

> run 

-4 is even 

-3 is odd 

-2 is even 

-1 is odd 

0 is zero 

1 is odd 

2 is even 

3 is odd 

4 is even 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 72 

4.3.11 Looping Conditional Statements 

Looping conditional statements include the traditional BASIC for-next loop 

and the more structured while-endwhile and do-until loops. 

 

The for-next loop statements are of the form: 

 
for variable = expression to expression step expression 

 statements 

next 

  

Where statements is one or more program statements and the step 

expression clause is optional and defaults to 1. 

 

The for-next loop expressions are evaluated only once, on initial entry to the 

loop.  The loop variable is initially set to the value of the first expression.  

Each time the loop variable is within the range (inclusive) of the first and 

second expression, the statements within the loop execute.  At the end of the 

loop, if the incremented loop variable would still be within the range 

(inclusive) of the first and second expression, the loop variable is incremented 

by the step value, and the loop repeats again.  On exit from the loop, the loop 

variable is equal to the value it had during the last iteration of the loop. 

 

The while-endwhile loop statements are of the form: 

 
while expression do 

 statements 

endwhile 

 

Where statements is one or more program statements . 

 

Alternately, the string form of this statement is: 

 
while string relation string do 

 statements 

endwhile 

 

The while-endwhile loop conditional expression is evaluated on each entry to 

the loop.  If it is true (non-0), the statements within the loop execute, and the 

loop repeats again.  On exit from the loop, the conditional expression is false. 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 73 

The do-until loop statements are of the form: 

 
do 

 statements 

until expression 

 

Where statements is one or more program statements . 

 

Alternately, the string form of this statement is: 

 
do 

 statements 

until string relation string 

 

The do-until loop conditional expression is evaluated on each exit from the 

loop.  If it is false (0), the loop repeats again.  On exit from the loop, the 

conditional expression is true. 

 

In all three kinds of loops, the loop can be exited prematurely using the 

statement: 

 
break 

 

This causes program execution to immediately jump to the statements 

following the terminal statement (i.e., the next, endwhile, or until) of the 

innermost loop. 

 

Additionally, multiple nested loops can be exited prematurely together using 

the statement: 

 
break n 

 

Which causes program execution to immediately jump to the statements 

following the terminal statement (i.e., the next, endwhile, or until) of the 

innermost n loops. 

 

Similarly, a loop can be continued, causing execution to resume immediately 

with the conditional expression evaluation, using the statement: 

 
continue 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 74 

This causes program execution to immediately jump to the conditional 

expression evaluation, at which point the loop may conditionally execute 

again. 

 

Multiple nested loops can be continued together using the statement: 

 
continue n 

 

Which causes program execution to immediately jump to the conditional 

expression evaluation of the innermost n loops. 

 

Examples 
> 10 dim a, b, sum 

> 20 while 1 do 

> 30   if a==10 then 

> 40     break 

> 50   endif 

> 60   let sum = 0 

> 70   for b = 0 to a 

> 80     let sum = sum+b 

> 90   next 

> 100   print "sum of integers 0 thru", a, "is", sum 

> 110   let a = a+1 

> 120 endwhile 

> run 

sum of integers 0 thru 0 is 0 

sum of integers 0 thru 1 is 1 

sum of integers 0 thru 2 is 3 

sum of integers 0 thru 3 is 6 

sum of integers 0 thru 4 is 10 

sum of integers 0 thru 5 is 15 

sum of integers 0 thru 6 is 21 

sum of integers 0 thru 7 is 28 

sum of integers 0 thru 8 is 36 

sum of integers 0 thru 9 is 45 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 75 

4.3.12 Subroutines 

A subroutine is called with the following statement: 

 
gosub subname [expression, ...] 

 

A subroutine is declared with the following statements: 

 
sub subname [param, ...] 

 statements 

endsub 

 

The sub can be exited prematurely using the statement: 

 
return 

 

This causes program execution to immediately return to the statements 

following the gosub statement that called the subroutine. 

 

In general, subroutines should be declared out of the normal execution path of 

the code, and typically are defined at the end of the program. 

 

Subroutine parameters are essentially variables local to the subroutine which 

are initialized to the values of the caller‟s gosub expressions.  Simple variable 

caller‟s gosub expression's, however, are passed to sub param's by 

reference, allowing the sub to modify the caller‟s variables; all other caller's 

gosub expressions are passed by value. 

 

Note that to force a variable to be passed by value to a subroutine, simply use 

a trivial expression like "var+0" in the gosub statement expression. 

 

Note also that to return a value from a subroutine, pass in a simple variable 

(by reference) and have the subroutine modify the corresponding param before 

it returns. 

 

Any variables dimensioned in a subroutine are local to that subroutine.  Local 

variables hide variables of the same name dimensioned in outer-more scopes.  

Local variables are automatically un-dimensioned when the subroutine 
returns. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 76 

Examples 
> 10 dim a 

> 20 for a = 0 to 9 

> 30   gosub sumit a 

> 40 next 

> 50 end 

> 60 sub sumit numbers 

> 70   dim a, sum 

> 80   for a = 1 to numbers 

> 90     let sum = sum+a 

> 100   next 

> 110   print "sum of integers 0 thru", numbers, "is", sum 

> 120 endsub 

> run 

sum of integers 0 thru 0 is 0 

sum of integers 0 thru 1 is 1 

sum of integers 0 thru 2 is 3 

sum of integers 0 thru 3 is 6 

sum of integers 0 thru 4 is 10 

sum of integers 0 thru 5 is 15 

sum of integers 0 thru 6 is 21 

sum of integers 0 thru 7 is 28 

sum of integers 0 thru 8 is 36 

sum of integers 0 thru 9 is 45 

> new 

> 10 dim a 

> 20 print a 

> 30 gosub increment a 

> 40 gosub increment a 

> 50 print a 

> 60 end 

> 70 sub increment value 

> 80   let value = value+1 

> 90 endsub 

> run 

0 

2 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 77 

4.3.13  Timers 

StickOS supports up to four internal interval timers (0 thru 3) for use by the 

program.  Timer interrupts are delivered when the specified time interval has 

elapsed since the previous interrupt was delivered. 

 

Timer interrupt intervals are configured with the statement: 

 
configure timer n for m (s|ms|us) 

 

This configures timer n to interrupt every m seconds, milliseconds, or 

microseconds. 

 

Note that the minimum timer resolution is the clock tick, which is 0.25 

milliseconds. 

 

The timer interrupt can then be enabled, and the statement(s) to execute when 

it is delivered specified, with the statement: 

 
on timer n statement 

 

If statement is a "gosub subname ...", then all of the statements in the 

corresponding sub are executed when the timer interrupt is delivered; 

otherwise, just the single statement is executed. 

 

The timer interrupt can later be completely ignored (i.e., discarded) with the 

statement: 

 
off timer n 

 

The timer interrupt can be temporarily masked (i.e., held off but not 

discarded) with the statement: 

 
mask timer n 

 

And can later be unmasked (i.e., any pending interrupts delivered) with the 

statement: 

 
unmask timer n 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 78 

Examples 
> 10 dim ticks 

> 20 configure timer 0 for 1000 ms 

> 30 on timer 0 do print "slow" 

> 40 configure timer 1 for 200 ms 

> 50 on timer 1 do gosub fast 

> 60 sleep 3 s 

> 70 print "ticks is", ticks 

> 80 end 

> 90 sub fast 

> 100   let ticks = ticks+1 

> 110 endsub 

> run 

slow 

slow 

slow 

ticks is 14 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 79 

4.3.14 Digital I/O 

StickOS supports digital I/O on all pins. 

 

A pin is configured for digital I/O, and a variable bound to that pin, with the 

following statement: 

 
dim varpin as pin pinname for digital (input|output) \ 

 [debounced] [inverted] [open_drain] 

 

If a pin is configured for digital input, then subsequently reading the variable 

varpin will return the value 0 if the digital input pin is currently at a low 

level, or 1 if the digital input pin is currently at a high level.  It is illegal to 

attempt write the variable varpin (i.e., it is read-only). 

 

If a pin is configured for digital output, then writing varpin with a 0 value 

will set the digital output pin to a low level, and writing it with a non-0 value 

will set the digital output pin to a high level.  Reading the variable varpin 

will return the value 0 if the digital output pin is currently at a low level, or 1 

if the digital output pin is currently at a high level. 

 

If the debounced pin qualifier is used, input values are passed thru a 12ms 

glitch-elimination filter. 

 

If the inverted pin qualifier is used, all input and output values are 

logically inverted (i.e., 0->1, 1->0) at the pin. 

 

If the open_drain pin qualifier is used, an output pin is tri-stated for a logic 

1 output. 

Examples 

See Digital I/O Example 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 80 

4.3.15 Analog I/O 

Use the help pins command to see the list of MCU pin names and their 

analog capabilities. 

 

A pin is configured for analog I/O, and a variable bound to that pin, with the 

following statement: 

 
dim varpin as pin pinname for analog (input|output) \ 

 [debounced] [inverted] 

 

If a pin is configured for analog input, then subsequently reading the variable 

varpin will return the analog voltage level, in millivolts (mV).  It is illegal 

to attempt write the variable varpin (i.e., it is read-only). 

 

If a pin is configured for analog output, then writing varpin with a millivolt 

value will set the analog output (PWM actually) pin to a corresponding analog 

voltage level.  Reading the variable varpin will return the analog voltage 

level, in millivolts (mV). 

 

If the debounced pin qualifier is used, input values are passed thru a 12ms 

glitch-elimination filter. 

 

If the inverted pin qualifier is used, all input and output values are 

logically inverted at the pin (i.e., the pin mV is replaced with the maximum 

analog supply voltage millivolts minus the pin mV). 

 

The maximum analog supply voltage millivolts may be displayed with the 

command: 

 
 analog 

 

Configure the maximum analog supply voltage millivolts with the following 

command: 

 
 analog millivolts 

 

This value defaults to 3300 mV and is stored in flash and affects all analog I/O 
pins. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 81 

Examples 

See Analog I/O Example 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 82 

4.3.16 Servo I/O 

Please note that as of v1.84, the units of servo output pins was changed from 

centi-milliseconds (cms) to microseconds (us). 

 

Use the help pins command to see the list of MCU pin names and their 

servo capabilities. 

 

A pin is configured for servo I/O, and a variable bound to that pin, with the 

following statement: 

 
dim varpin as pin pinname for servo output 

 

If a pin is configured for servo output, then writing varpin with a centi-

millisecond (cms, v1.82-) or microsecond (us, v1.84+) value will set the servo 

output pin to the specified pulse duration.  Reading the variable varpin will 

return the output pulse duration, in centi-milliseconds (cms, v1.82-) or 

microseconds (us, v1.84+). 

 

The servo frequency may be displayed with the command: 

 
 servo 

 

Configure the servo frequency (in Hz) with the following command: 

 
 servo Hz 

 

This takes effect after the next MCU reset. 

 

This value defaults to 45 Hz and is stored in flash and affects all servo I/O 

pins. 

Examples 

See Servo I/O Example 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 83 

4.3.17 Frequency I/O 

Use the help pins command to see the list of MCU pin names and their 

frequency capabilities. 

 

A pin is configured for frequency I/O, and a variable bound to that pin, with 

the following statement: 

 
dim varpin as pin pinname for frequency output 

 

If a pin is configured for frequency output, then writing varpin with a hertz 

(Hz) value will set the frequency output pin to the specified frequency.  

Reading the variable varpin will return the output frequency, in hertz (Hz).

  

Examples 

See Frequency I/O Example 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 84 

4.3.18 UART I/O 

Use the help pins command to see the list of MCU pin names and their 

UART capabilities. 

 

UARTs can be configured for a specific serial communication protocol and 

then used to transmit or receive serial data.  UARTs can also be configured to 

generate interrupts when they receive or transmit a character (or more 

specifically, when the uart receive buffers are not empty, or when the uart 

transmit buffers are empty). 

 

UART serial communication protocols are configured with the statement: 

 
configure uart n for b baud d data (even|odd|no) parity 

configure uart n for b baud d data (even|odd|no) parity loopback 

 

This configures uart n for b baud operation, with d data bits and the specified 

parity; 2 stop bits are always transmitted and 1 stop bit is received.  If the 

optional "loopback" parameter  is specified, the UART is configured to loop 

all transmit data back into its own receiver, for testing purposes. 

 

Once the UART is configured, pin variables should be bound to the specified 

UART's transmit and receive pins with one or more of the following 

statements: 

 
 dim varrx as pin pinname for uart input 

 dim vartx as pin pinname for uart output 

 

This binds the varrx variable to the specified UART's receive data pin, and 

the vartx variable to the specified UART's transmit data pin.  From then on, 

receive data can be examined by reading the varrx variable, and transmit 

data can be generated by writing the vartx variable. 

 

Please note the pin variable method of accessing UART I/O should not be 

used on PIC32, because the binding of PIC32 UARTs to port pins changes 

magically as you move from part to part; instead, the statements below should 

be used which will usurp the correct (unspecified) port pins for the part. 

 
Alternately, UART I/O can be performed explicitly with statements which 

specifies the data variables (and implicitly, the data sizes) to be transferred: 

 
 uart n write variable, ... 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 85 

 uart n read variable, ... 

 

During the UART read/write statements, the current value of all variables, for 

their corresponding sizes (8 bits, 16 bits, or 32 bits) will be shifted out (write) 

or shifted in (read).  If an array variable is specified, its entire array contents 

are used.  Note that a read of data that is not available yet will block until the 

data is available, holding off BASIC interrupt handlers; it is therefore best to 

read only one byte at a time, after you have determined it is available. 
 

At this point, if desired, interrupt handlers can be set up to handle UART 

receive and/or transmit interrupts.  UART receive interrupts are delivered 

when the uart receive buffers are not empty; UART transmit interrupts are 

delivered when the uart transmit buffers are empty. 

 

The UART receive or transmit interrupt can be enabled, and the statement(s) 

to execute when it is delivered specified, with the statement: 

 
 on uart n (input|output) statement 

 

 If statement is a "gosub subname ...", then all of the statements in 

the corresponding sub are executed when the timer interrupt is delivered; 

otherwise, just the single statement is executed. 

 

Note that an initial UART transmit interrupt is generated when the transmit 

interrupt is enabled, since the uart transmit buffers are empty! 

 

The UART receive or transmit interrupt can later be completely ignored (i.e., 

discarded) with the statement: 

 
off uart n (input|output) 

 

The UART receive or transmit interrupt can be temporarily masked (i.e., held 

off but not discarded) with the statement: 

 
mask uart n (input|output) 

 

 

And can later be unmasked (i.e., any pending interrupts delivered) with the 
statement: 

 
unmask uart n (input|output) 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 86 

Examples 

See UART I/O Example 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 87 

4.3.19 I2C Master I/O 

Use the help pins command to see the list of MCU pin names and their 

I2C capabilities. 

 

Unlike UART I/O, pin variables are not used for I2C I/O.  Instead, there is an 

i2c statement which specifies the data variables (and implicitly, the data 

sizes) to be transferred via I2C.  I2C transfers may be unidirectional (write or 

read) or bidirectional (mixed in any combination). 

 

An I2C transaction is started and the I2C device is addressed with the 

statement: 

 
 i2c start address 

 

Where address is the 7-bit I2C address of the device.  Note that an i2c 

address is in the range 0 to 127 (or 0x7f).  If you have an address that is 

greater than 128 (or 0x80), that is actually the address shifted left by one bit, 

and so needs to be shifted right by one bit (divided by 2) to obtain the real 

address. 

 

Once the transaction is started, data can be written or read with the statements: 

 
 i2c write variable, ... 

 i2c read variable, ... 

 

During the i2c read/write statements, the current value of all variables, for 

their corresponding sizes (8 bits, 16 bits, or 32 bits) will be shifted out (write) 

or shifted in (read).  If an array variable is specified, its entire array contents 

are used. 

 

Finally, the I2C transaction is completed with the statement: 

 
 i2c stop 

 

Note that i2c statements can also be run in immediate mode, allowing you to 

interactively discover the way your i2c peripherals work!!! 

Examples 

See I2C Master I/O Example 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 88 

4.3.20 QSPI Master I/O 

Use the help pins command to see the list of MCU pin names and their 

QSPI capabilities. 

 

Unlike UART I/O, pin variables are not used for QSPI I/O.  Instead, there is a 

qspi statement which specifies the data variables (and implicitly, the data 

sizes) to be transferred via QSPI.  QSPI transfers are always bidirectional -- 

the current values of the variables are shifted out and new values are shifted 

in. 

 

Data is transferred (again, bidirectionally) with a single statement: 

 
 qspi variable, ... 

 

The BASIC program is responsible for defining a chip select pin as a digital 

output and asserting it prior to the qspi statement, and deasserting it 

afterwards.  During the qspi statement, the current value of all variables, for 

their corresponding sizes (8 bits, 16 bits, or 32 bits) will be shifted out, and the 

new values for the same variables will be shifted in.  If an array variable is 

specified, its entire array contents are used. 

 

Note that qspi statements can also be run in immediate mode, allowing you to 

interactively discover the way your qspi peripherals work!!! 

Examples 

See QSPI Master I/O Example 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 89 

4.3.21 Pin Interrupts 

StickOS can also support pin interrupts on any input (or output, for that 

matter) pin thru the use of pin variables in the watchpoint expression: 

 
line on expression do statement 

 

The watchpoint expression is re-evaluated before every line of the program is 

executed; if the expression transitions from false to true, the watchpoint 

statement handler runs. 

 

Since watchpoints have to transition from false to true, you can think of them 

as an edge-sensitive interrupt on a digital input pin.  On an analog input pin, 

you can think of then as detecting an edge at a specific voltage level. 

 

To set the smart watchpoint mode, which dramatically reduces watchpoint 

overhead at a slight delay of input pin sensitivity, use the command: 

 
watchsmart (on|off) 

 

To display the smart watchpoint mode, use the command: 

 
watchsmart 

 

For the example below, the MCU sw1 should be pressed one or more times 

after running the program. 

Examples 
> 10 dim switch as pin irq1* for digital input 

> 20 on ! switch do print "switch pressed!" 

> 30 sleep 1000 s 

> run 

switch pressed! 

switch pressed! 

switch pressed! 

> _ 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 90 

4.3.22 4x4 Scanned Keypad Support 

(v1.82+) StickOS makes it easy to interface to a scanned 4x4 keypad.  Using 

the "pins" command, you can select 4 digital output pins for the keypad scan 

lines (kbd_s0-kbd_s3) and 4 digital input pins as the keypad return lines 

(kbd_r0-kbd_r3). 

 

You can then set the keypad scan character codes for the 16 keypad buttons 

with the command: 

 
keychars 16-ascii-characters 

 

You can display the keypad scan character codes with the command: 

 
keychars 

 

From then on, the most recent keypad character is available to BASIC 

programs in the system variable "keychar", which you will typically use as 

"keychar$". 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 91 

Examples 
> pins 

heartbeat pte6 

safemode* ptg0 

qspi_cs* pte7 

clone_rst* none 

zigflea_rst* none 

zigflea_attn* none 

zigflea_rxtxen none 

lcd_d4 pta2 

lcd_d5 pta3 

lcd_d6 pta4 

lcd_d7 pta5 

lcd_en pta1 

lcd_rs pta0 

kbd_s0 ptd4 

kbd_s1 ptd5 

kbd_s2 ptd6 

kbd_s3 ptd7 

kbd_r0 ptd0 

kbd_r1 ptd1 

kbd_r2 ptd2 

kbd_r3 ptd3 

> keychars 

123a456b789c*0#d 

> 10 on keychar do print keychar$ 

> 20 halt 

> run 

11 

22 

33 

44 

STOP at line 20! 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 92 

4.3.23 HD44780-compatible LCD Support 

(v1.82+) StickOS makes it easy to interface to a 4-bit LCD that is HD44780-

compatible.  Using the "pins" command, you can select 4 digital output pins 

for data bits (lcd_d4-lcd_d7), and 2 more digital outputs for the enable and 

register select control lines (lcd_en, lcd_rs). 

 

You can then interface to the LCD using the lcd command: 

 
lcd pos, [dec|hex|raw] expression 

 

Or strings: 

 
lcd pos, string 

 

Or various combinations of both. 

 

Where pos is an LCD line number (0-3) or a LCD ram buffer position (0x80-

0xff). 

 

See Print Statements for more details. 

Examples 
> pins 

heartbeat pte6 

safemode* ptg0 

qspi_cs* pte7 

clone_rst* none 

zigflea_rst* none 

zigflea_attn* none 

zigflea_rxtxen none 

lcd_d4 pta2 

lcd_d5 pta3 

lcd_d6 pta4 

lcd_d7 pta5 

lcd_en pta1 

lcd_rs pta0 

kbd_s0 ptd4 

kbd_s1 ptd5 

kbd_s2 ptd6 

kbd_s3 ptd7 

kbd_r0 ptd0 

kbd_r1 ptd1 

kbd_r2 ptd2 

kbd_r3 ptd3 

> lcd 0, "hello world!" 

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 93 

4.3.24 Other Statements 

You can delay program execution for a number of seconds, milliseconds, or 

microseconds using the statement: 

 
sleep expression (s|ms|us) 

 

Note that the minimum sleep resolution is the clock tick, which is 0.25 

milliseconds.  Note also that in general it would be a bad idea to use a sleep 

statement in the on handler for a timer or uart interrupt. 

 

You can add remarks to the program, which have no impact on program 

execution, with the statement: 

 
rem remark 

Examples 
> 10 rem this program takes 5 seconds to run 

> 20 sleep 5 s 

> run 

> _ 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 94 

4.4 Performance 
StickOS typically runs about 1000 BASIC statements per second per 
processor MHz (i.e., 50,000 lines/second on a 50MHz processor).  Many 

issues affect performance, most notably the specific statement mix. 

 

StickOS runs fastest when not merging program lines from RAM and flash, so 

you should always save your program (causing RAM and flash program 

lines to be re-merged back to flash) before running it.  It is also a good idea to 

renumber your program to ensure profile buckets are evenly distributed to 

the lines of your program. 

 

Once you have run a saved/renumbered program, you can use the following 

command to list the time spent in each line of the program: 

 
 profile 

profile line 

profile -line 

profile line- 

profile line-line 

 

Alternately, you can list the time spent in an entire subroutine by name with 

the command: 

 
profile subname 

Examples 
> new 

>   10 dim a, sum 

>   20 for a = 1 to 10000 

>   30   let sum = sum+a 

>   40 next 

>   50 print sum 

> save 

> run 

50005000 

> profile 

     0ms    10 dim a, sum 

    22ms    20 for a = 1 to 10000 

   315ms    30   let sum = sum+a 

   141ms    40 next 

     2ms    50 print sum 

end 

> 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 95 

5 2.4GHz ZigFlea Wireless Operation 

5.1 ZigFlea Configuration 
Prior to any wireless operation, each MCU/IOStick pair needs to have a 

unique zigflea nodeid set.  ZigFlea nodeid‟s are integers from 0 to 65534.  The 

zigflea nodeid is set with the following command: 

 
nodeid nodeid 

5.2 ZigFlea Remote Control 
To connect to another MCU from the current one, use the command: 

 
> connect new-nodeid 

press Ctrl-D to disconnect 

 

At that point you should press <Enter> to get a prompt from the remote 

MCU (or press <Ctrl-C> to stop it if it is running a program), and verify its 

nodeid: 

 
<Enter>  
> nodeid 

new-nodeid  

> _ 

 

When you are done using the other MCU, press <Ctrl-D> and the original 

MCU will print the following message, followed by a prompt: 

 
 ...disconnected 

 

It is always a good idea to re-verify its nodeid: 

 
> nodeid 

old-nodeid  

> _ 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 96 

5.3 ZigFlea Remote Variables 
A MCU can modify variables on a remote MCU using zigflea remote 

variables.  A remote variable is declared with the statement: 

 
dim varremote as remote on nodeid nodeid 

 

This tells StickOS that the variable varremote is actually dimensioned on 

another node, nodeid, and any updates of that variable on this node should 

be forwarded to that other node for processing. 

 

When varremote is modified, the request will be forwarded to the other 

nodeid; if the other nodeid does not accept the request, varremote will be 

reset to -1 instead. 

 

The following example shows a remote LED dimmer, where the 

potentiometer on nodeid 1 is used to control the LED on nodeid 2. 

Examples 
> nodeid 

1 

> 10 dim potentiometer as pin an0 for analog input 

> 20 dim led as remote on nodeid 2 

> 30 while 1 do 

> 40   let led = potentiometer 

> 50   sleep 100 ms 

> 60 endwhile 

> save 

> autorun on 

> connect 2 

press Ctrl-D to disconnect 

<Enter> 

> nodeid 

2 

> 10 dim led as pin dtin0 for analog output 

> 20 while 1 do 

> 30 endwhile 

> save 

> autorun on 

> run 

<Ctrl-D> ...disconnected 
> nodeid 

1 

> run 

now adjust the potentiometer on nodeid 1 

  and watch the LED change on nodeid 2!!! 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 97 

6 Standalone Operation 
Once the MCU is disconnected from the host computer, it may be run 

standalone. 

 

Based on the “autorun” mode, when the MCU is powered up, it will typically 

start running the (saved) BASIC program automatically. 

 

Again, when the StickOS is running the “heartbeat” LED will blink slowly; 

when the BASIC program in the MCU is running, the “heartbeat” LED will 

blink quickly. 

 

Note that any unsaved changes to the BASIC program will be lost if the MCU 

is reset or loses power. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 98 

7 Slave Operation 
Though this probably goes without saying, the MCU can also be permanently 

connected to the host computer and used as a slave data acquisition/control 

device, all under host computer software control! 

 

To do this, the host computer software program would simply open the MCU 

virtual COM port or TCP/IP port and then write StickOS commands and/or 

statements to it, and then read the results back from it. 

 

Often it is useful to disable terminal echo and prompts when running in slave 

mode. 

 

To set the terminal echo and prompt modes, use the commands: 

 
echo (on|off) 

prompt (on|off) 

 

To display the terminal echo and prompt modes, use the commands: 

 
echo 

prompt 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 99 

8 MCU Cloning 
A master MCU can clone its flash to a slave MCU, including any BASIC 

programs and flash parameter values, by simply connecting the master MCU 

to the slave MCU with the following cable: 

 

master      slave 

qspi_clk    qspi_clk (ezpck) 

qspi_din    qspi_dout (ezpq) 

qspi_dout   qspi_din (ezpd) 

pins qspi_cs*    rcon* (ezpcs*) 

pins qspi_rst*         rsti* 

vss         vss 

vdd         vdd 

 

And then using the following command on the master MCU: 

 
> clone 

Welcome to StickOS for Freescale MCF52221 v1.2! 

Copyright (c) 2008; all rights reserved. 

cloning...  

done! 

> _ 

 

Or if you want the slave MCU to start running immediately following the 

clone procedure, use the following command instead: 

 
> clone run 

Welcome to StickOS for Freescale MCF52221 v1.2! 

Copyright (c) 2008; all rights reserved. 

cloning...  

done! 

> _ 

9 MCU Downloading 
A master MCU can download a S19 or HEX file to a slave MCU using the 

same connections as above, but replacing the "clone" command with the 

"download" command followed by the slave operating frequency, in Hz: 

 
> download 8000000 

paste S19 upgrade file now... 

 

At that point you should paste the entire S19 upgrade file into your terminal 

emulator. 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 100 

10 MCU Upgrading 
Note that the upgrade procedure wipes out all BASIC programs and 

parameters from flash memory. 

 

A MCU‟s StickOS firmware (i.e., the BASIC development environment itself) 

can be upgraded with the following command: 

 
> upgrade 

paste S19 upgrade file now... 

 

At that point you should paste the entire S19 upgrade file into your terminal 

emulator. 

 

When upgrade is nearly complete (about two minutes), you will see: 

 
paste done! 

programming flash... 

wait for MCU heartbeat LED to blink! 

 

Then wait for the MCU “heartbeat” LED to blink, indicating flash 

programming is complete; press the “Disconnect” button followed by the 

“Call” button, to reconnect Hyper Terminal. 

 

After the upgrade, you must then update the StickOS pin assignments; see 

First Boot & Pin Assignments in both this User‟s Guide and the CPUStick 

User‟s Guide, as appropriate.  Until you update the StickOS pin assignments, 

the heartbeat LED will not blink and zigflea will be unusable, but StickOS 

will still be running, so you can connect the terminal emulator and make the 

necessary pin assignment updates. 

 

Note that once flash programming begins, a failed (or interrupted) upgrade 

procedure may only be able to be recovered via a re-clone from a working 

MCU. 

 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 101 

11 Appendix 

11.1 StickOS Command Reference 

11.1.1 Commands 
<Ctrl-C>                      -- stop program 

auto <line>                   -- automatically number program lines 

clear [flash]                 -- clear ram [and flash] variables 

cls                           -- clear terminal screen 

cont [<line>]                 -- continue program from stop 

delete ([<line>][-][<line>]|<subname>) -- delete program lines 

download <slave Hz>           -- download flash to slave MCU 

dir                           -- list saved programs 

edit <line>                   -- edit program line 

help [<topic>]                -- online help 

list ([<line>][-][<line>]|<subname>) -- list program lines 

load <name>                   -- load saved program 

memory                        -- print memory usage 

new                           -- erase code ram and flash memories 

profile ([<line>][-][<line>]|<subname>) -- display profile info 

purge <name>                  -- purge saved program 

renumber [<line>]             -- renumber program lines (and save) 

reset                         -- reset the MCU! 

run [<line>]                  -- run program 

save [<name>]                 -- save code ram to flash memory 

undo                          -- undo code changes since last save 

upgrade                       -- upgrade StickOS firmware! 

uptime                        -- print time since last reset 

11.1.2 Modes 
analog [<millivolts>]             -- set/display analog voltage scale 

baud [<rate>]                     -- set/display uart console baud rate 

autorun [on|off]                  -- autorun mode (on reset) 

echo [on|off]                     -- terminal echo mode 

indent [on|off]                   -- listing indent mode 

keychars [<keychars>]             -- set/display keypad scan chars 

nodeid [<nodeid>|none]            -- set/display zigflea nodeid 

numbers [on|off]                  -- listing line numbers mode 

pins [<assign> [<pinname>|none]]  -- set/display StickOS pin assignments 

prompt [on|off]                   -- terminal prompt mode 

servo [<Hz>]                      -- set/display servo Hz (on reset) 

step [on|off]                     -- debugger single-step mode 

trace [on|off]                    -- debugger trace mode 

watchsmart [on|off]               -- low-overhead watchpoint mode 

 

pin assignments: 

  heartbeat  safemode* 

  qspi_cs*  zigflea_rst*  zigflea_attn*  zigflea_rxtxen 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 102 

11.2 BASIC Program Statement Reference 

11.2.1 Statements 
<line>                                 -- delete program line from code ram 

<line> <statement>                     -- enter program line into code ram 

 

assert <expression>                    -- break if expression is false 

data <n> [, ...]                       -- read-only data 

dim <variable>[$][[n]] [as ...] [, ...] -- dimension variables 

end                                    -- end program 

halt                                   -- loop forever 

input [dec|hex|raw] <variable>[$] [, ...] -- input data 

label <label>                          -- read/data label 

lcd <pos>, [dec|hex|raw] <expression> [, ...] [;] -- display results on lcd 

let <variable>[$] = <expression> [, ...] -- assign variable 

print [dec|hex|raw] <expression> [, ...] [;] -- print results 

read <variable> [, ...]                -- read read-only data into variables 

rem <remark>                           -- remark 

restore [<label>]                      -- restore read-only data pointer 

sleep <expression> (s|ms|us)           -- delay program execution 

stop                                   -- insert breakpoint in code 

vprint <variable>[$] = [dec|hex|raw] <expression> [, ...] -- print to variable 

11.2.2 Block Statements 
if <expression> then 

[elseif <expression> then] 

[else] 

endif 

 

for <variable> = <expression> to <expression> [step <expression>] 

  [(break|continue) [n]] 

next 

 

while <expression> do 

  [(break|continue) [n]] 

endwhile 

 

do 

  [(break|continue) [n]] 

until <expression> 

 

gosub <subname> [<expression>, ...] 

 

sub <subname> [<param>, ...] 

  [return] 

endsub 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 103 

11.2.3 Device Statements 
timers: 

  configure timer <n> for <n> (s|ms|us) 

  on timer <n> do <statement>                -- on timer execute statement 

  off timer <n>                              -- disable timer interrupt 

  mask timer <n>                             -- mask/hold timer interrupt 

  unmask timer <n>                           -- unmask timer interrupt 

 

uarts: 

  configure uart <n> for <n> baud <n> data (even|odd|no) parity [loopback] 

  on uart <n> (input|output) do <statement>  -- on uart execute statement 

  off uart <n> (input|output)                -- disable uart interrupt 

  mask uart <n> (input|output)               -- mask/hold uart interrupt 

  unmask uart <n> (input|output)             -- unmask uart interrupt 

  uart <n> (read|write) <variable> [, ...]   -- perform uart I/O 

 

i2c: 

  i2c (start <addr>|(read|write) <variable> [, ...]|stop) -- master i2c I/O 

 

qspi: 

  qspi <variable> [, ...]                    -- master qspi I/O 

 

watchpoints: 

  on <expression> do <statement>             -- on expr execute statement 

  off <expression>                           -- disable expr watchpoint 

  mask <expression>                          -- mask/hold expr watchpoint 

  unmask <expression>                        -- unmask expr watchpoint 

11.2.4 Expressions 
the following operators are supported as in C, 

in order of decreasing precedence: 

  <n>                       -- decimal constant 

  0x<n>                     -- hexadecimal constant 

  'c'                       -- character constant 

  <variable>                -- simple variable 

  <variable>[<expression>]  -- array variable element 

  <variable>#               -- length of array or string 

  (   )                     -- grouping 

  !   ~                     -- logical not, bitwise not 

  *   /   %                 -- times, divide, mod 

  +   -                     -- plus, minus 

  >>  <<                    -- shift right, left 

  <=  <  >=  >              -- inequalities 

  ==  !=                    -- equal, not equal 

  |   ^   &                 -- bitwise or, xor, and 

  ||  ^^  &&                -- logical or, xor, and 



 

Copyright (c) 2008-2011; all rights reserved.  http://www.cpustick.com 104 

11.2.5 Strings 
v$ is a nul-terminated view into a byte array v[] 

 

string statements: 

  dim, input, let, print, vprint 

  if <expression> <relation> <expression> then 

  while <expression> <relation> <expression> do 

  until <expression> <relation> <expression> do 

 

string expressions: 

  "literal"                      -- literal string 

  <variable>$                    -- variable string 

  <variable>$[<start>:<length>]  -- variable substring 

  +                              -- concatenates strings 

 

string relations: 

  <=  <  >=  >                   -- inequalities 

  ==  !=                         -- equal, not equal 

  ~  !~                          -- contains, does not contain 

11.2.6 Variables 
all variables must be dimensioned! 

variables dimensioned in a sub are local to that sub 

simple variables are passed to sub params by reference; otherwise, by value 

array variable indices start at 0 

v is the same as v[0], except for input/print/i2c/qspi/uart statements 

 

ram variables: 

  dim <var>[$][[n]] 

  dim <var>[[n]] as (byte|short) 

 

absolute variables: 

  dim <var>[[n]] [as (byte|short)] at address <addr> 

 

flash parameter variables: 

  dim <varflash>[[n]] as flash 

 

pin alias variables: 

  dim <varpin> as pin <pinname> for (digital|analog|servo|frequency|uart) \ 

                                      (input|output) \ 

                                      [debounced] [inverted] [open_drain] 

 

system variables (read-only): 

  analog  getchar  keychar  nodeid  msecs  seconds  ticks  ticks_per_msec 

 

 


