Operators by precedence (higher precedence operators are evaluated before lower precedence operators):

()

Parentheses

* K

Exponentiation

+x -x ~X Unary plus, unary minus, unary bitwise NOT
* /% Multiplication, division, floor (integer) division, (integer) modulus
+ - Addition and subtraction

<< >> Bitwise left and right shifts

& Bitwise AND

~ Bitwise XOR

| Bitwise OR

= l= > >= < <= Logical comparisons, identity, membership
is is not in not in

not Logical NOT

and Logical AND

or Logical OR

Assignment within expression (walrus)

Examples (arithmetic and logical):

>>> 2%%4 >>> 5 > 2
16 True
>>> 7/2 >>> 5 < 2
3.5 False
>>> 7//2 >>> 3 > 3
3 False
>>> T%2 >>> 3 >= 3
1 True
>>> (7//2)*2 + 7%2 >>> 3 > 2 or 1 > 17
7 True
>>> 13&3 >>> 3 > 2 and 1 > 17
1 False
>>> 13|3 >>> 7 > 3
15 True
>>> 1371 >>> not (7 > 3)
12 False
>>> 13 and 3 >>> 3 > 7
3 False
>>> 0 and 3 >>> not (3 > 7)
0 True
>>> >>>
Assignment operators (arithmetic and string):
>>> i=T7 >>> a = "cat"
>>> i+=3 >>> a += "dog"
>>> i >>> a
10 'catdog’
>>> i*2 >>> a*3
20 'catdogcatdogcatdog’
>>> >>>

Range() function returns an iterable object, which can be displayed as a list:

>>> range (8)

range (0, 8)

>>> list(range(8))

[OI 1/ 2/ 3/ 4/ 5/ 6/ 7]
>>> list(range(3,8))

[3, 4, 5, 6, 7]

>>> list(range(3,8,2))
[3, 5, 7]

>>>

“For loops” iterate over iterable object or all items of a list (or other sequence) one at a time:

>>> for i in range(4):

>>> for i in list(range(10,7,-1)):

print (i) print (i)
0 10
1 9
2 8
3 >>>
>>>
“While loops” repeat until the conditional or logical expression is False:
>>> i = 2 >>> i = 10
>>> while i < 7: >>> while i > 7:
print (i) print (i)
i+=1 i=1i-1
2 10
3 9
4 8
5 >>>
6
>>>

Loop control:

More loop examples:

“break” — causes loop to stop iterating early (and skip all remaining items or values)
“continue” — causes loop to immediately jump to next iteration (skipping further code in the loop iteration)
“else” - (only in python!) runs when loop reaches the end of items or values (but not if “break” was executed)

>>> i =17
>>> while True:
print (i)
i+=2
if i > 12 and i%3==0:
break
7
9
11
13
>>> print("after the loop, i is", i)

after the loop, i is 15

>>>

What happened? We started by settingito 7. Thenwe
enter an “infinite loop” whose condition is “True” — this
loop will continue running (infinitely) until a “break”
statement is executed! For each iteration of the loop,
we print the value of i. Then we add 2toi. Then we test
the value to i to see if it is both greater than 12 and
divisible by 3 (using the mod 3 operator, looking for a
remainder of 0). Ifitis, we break out of the infinite
loop! When this happens, iis 15 (but had not yet been
printed, so we do so afterwards)

>>> i=5
>>> while i<10:
i i+l
print ("thinking")
if i<8:
continue
print (i)
else:
print ("after the loop, i is", i)

thinking
thinking
thinking

8

thinking

9

thinking

10

after the loop,
>>>

i is 10

What happened? We started by setting i to 5. Thenwe
enter a conditional loop that will terminate when i is >=
10. For each iteration of the loop, we add 1toi. Then
we print “thinking” and test ifiis <8 —if it is, we
continue back to the top of the loop without running
any more code in the loop. Otherwise, we printi.
Finally, when the loop is done, we print the value of i
again.

