
Arithmetic and logical operators by precedence (higher precedence operators are evaluated before lower ones):
() Parentheses
** Exponentiation
+x -x ~x Unary plus, unary minus, unary bitwise NOT
* / // % Multiplication, division, floor (integer) division, (integer) modulus
+ - Addition and subtraction
<< >> Bitwise left and right shifts
& | ^ Bitwise AND, OR, XOR
== != > >= < <=

is is not in not in

Logical comparisons, identity, inequality, membership

and or not Logical AND., OR, NOT
:= Assignment within expression (walrus)

Arithmetic and logical operator examples:
>>> 2**4

16

>>> 7/2

3.5

>>> 7//2

3

>>> 7%2

1

>>> (7//2)*2 + 7%2

7

>>> 13&3

1

>>> 13|3

15

>>> 13^1

12

>>> 5 > 2

True

>>> 5 < 2

False

>>> 3 > 3

False

>>> 3 >= 3

True

>>> 3 >= 2 or 1 > 17

True

>>> 3 >= 2 and 1 > 17

False

>>> not (5 > 2)

False

>>> not (2 > 5)

True

String operators:
+ concatenation
* repetition

String operator examples:
>>> "cat" + "dog"

'catdog'

>>> "cat" * 3

'catcatcat'

>>> ("cat" + "dog") * 3

'catdogcatdogcatdog'

>>> "cat" * 0

''

Assignment operators:
variable = value assign arithmetic or string value to variable
+= -= *= /= //= %= add, subtract, multiply, divide, unary divide, or modulus variable by value

Assignment operator examples (arithmetic and string):
>>> i = 7

>>> i

7

>>> i += 3

>>> i

10

>>> a = "cat"

>>> a

cat

>>> a += "dog"

>>> a

'catdog'

Print examples:
>>> a = 42

>>> print("a's value is", a)

a's value is 42

>>> print(42, 42+2, 42+4)

42 44 46

>>> print("3 + 5 is", 3+5)

3 + 5 is 8

>>> a = "john"

>>> print("hello", a)

hello john

Comparisons of variables:
>>> a = 5

>>> b = 2

>>> a == b

False

>>> a != b

True

>>> a > b

True

>>> a < b

False

>>> a = "cat"

>>> b = "dog"

>>> a == b

False

>>> a != b

True

>>> a > b

False

>>> b > a

True

Range() function returns an iterable object, which can be displayed as a list:
>>> range(8)

range(0, 8)

>>> list(range(8))

[0, 1, 2, 3, 4, 5, 6, 7]

>>> list(range(3,8))

[3, 4, 5, 6, 7]

>>> list(range(3,8,2))

[3, 5, 7]

"If statements" allow conditional execution of code:
>>> if 3 > 7:

... print("greater")

... else:

... print("not greater")

...

not greater

>>> if 3 > 3:

... print("greater")

... elif 3 < 3:

... print("less")

... else:

... print("neither greater nor less")

...

neither greater nor less

“For loops” iterate code over iterable object or all items of a list (or other sequence) one at a time:
>>> for i in range(2,6):

... print(i)

...

2

3

4

5

>>> for i in list(range(10,7,-1)):

... print(i)

...

10

9

8

“While loops” repeat code until the conditional or logical expression is False:
>>> i = 2

>>> while i < 6:

... print(i)

... i += 1

...

2

3

4

5

>>> i = 10

>>> while i > 7:

... print(i)

... i = i - 1

...

10

9

8

“break” – causes loop to stop iterating early (and skip all remaining items or values)
“continue” – causes loop to immediately jump to top of next iteration (skipping further code in the current iteration)
“else” – (only in python!) runs when loop reaches the end of items or values (but not if “break” was executed)

