
Build a Simple-Simon Game using Flea-Scope™
Introduction
Hopefully you remember the game -- four buttons, four different color lights, and four different sounds, and you have to

repeat the “challenge” pattern as it gets longer and longer, and if you fail, you get to hear the “raspberry” sound!

Using a Flea-Scope™ board running StickOS® BASIC, it is possible to quickly build a simple-simon game in minutes at

home, using nothing but a soldering iron and a web browser! (Or you can even build it without a soldering iron, using a

solderless breadboard!)

Figure 1a and 1b -- Flea-Scope™ wired for Simple-Simon

A Flea-Scope can be controlled by any Chromium-based web browser that supports WebUSB API or Web Serial API

running on a computer, tablet, or phone (!!!), with no need for further software install – just plug it in and open a web-

page and you are ready to write and debug your simple-simon game in StickOS BASIC.

You can find a short video of the simple-simon game in action here:

https://1drv.ms/v/s!An6qoNgNXmeQhbQsx2NcGufonJJkBA?e=EPw5kv

StickOS BASIC running within the Flea-Scope is an entirely MCU-resident interactive programming environment, which

includes an easy-to-use editor, transparent line-by-line compiler, interactive debugger, performance profiler, and flash

filesystem, all controlled thru an interactive command-line user interface. In StickOS, external MCU pins may be

mapped to BASIC “pin variables” for manipulation or examination, and internal MCU peripherals may be managed by

BASIC control statements and interrupt handlers.

You can find an introduction to StickOS BASIC here, in Microcontrollers For Everyone!:

https://rtestardi.github.io/pages/mfe.pdf

The StickOS BASIC User’s Guide is here:

https://rtestardi.github.io/StickOS/downloads/stickos.v1.90.pdf

And the StickOS BASIC Quick Reference is here:

https://rtestardi.github.io/StickOS/downloads/quickref.v1.90.pdf

https://1drv.ms/v/s!An6qoNgNXmeQhbQsx2NcGufonJJkBA?e=EPw5kv
https://rtestardi.github.io/pages/mfe.pdf
https://rtestardi.github.io/StickOS/downloads/stickos.v1.90.pdf
https://rtestardi.github.io/StickOS/downloads/quickref.v1.90.pdf

Simple-Simon Game State Diagram
This game is actually quite a clever piece of programming, even though the original game was undoubtedly written for a

TMS1000 4-bit microprocessor! It involves a complex state machine shown in Figure 2 whose decomposition takes a bit

of time to understand...

In the state diagram, there are only three main game “states”, represented by ovals:

• challenge (the game is playing the notes for the user)

• confirm (the user has to repeat the notes back to the game -- if successful, the challenge grows by one note)

• raspberry (the user failed -- the game is over and will start from the beginning again)

• (in the code, a final state is used just to restart the game after a delay, so the game plays over and over)

There are four “events” that can occur while in a game state, possibly affecting “state variables” or leading you to a new

game “state”:

• start (occurs at the start of the game and leads us to the “challenge” state)

• timer (occurs every 500ms)

• button down (occurs when the user presses a button)

• button up (occurs when the user releases a button)

When an event occurs, you follow the flowchart decision tree (rectangles for actions and diamonds for decisions) using

or modifying the other “state variables” and eventually end up at a new game “state”.

The “state variables” which contain game state beyond the three main game states include:

• arrayLength -- number of notes in the noteArray

• noteArray[] -- 1..4 in each slot, for colors 1..4

• arrayIndex -- 0..arrayLength-1 (used for challenge and confirm)

• gameMode -- 0 = challenge; 1 = confirm; 2 = raspberry

• replayState -- 0 = note; 1 = quiet

• waitTime -- 0..4 (timer ticks)

https://en.wikipedia.org/wiki/Texas_Instruments_TMS1000

Figure 2 -- Simple-Simon State Diagram

challenge

(gameMode = 0)

timer

audio play

noteArray[arrayIndex];

replayState = 1;

replayState

0

1

audio play off;

replayState = 0;

increment arrayIndex;

arrayIndex =

arrayLength

yes

gameMode = 1;

arrayIndex = 0;

waitTime = 0;

no

noteArray[arrayLength] = random;

increment arrayLength;

arrayIndex = 0;

gameMode = 0;

replayState = 0;

confirm

(gameMode = 1)

button =

noteArray[arr

ayIndex]
no

raspberry

(gameMode = 2)

increment waitTime;

waitTime =

4

timer

no

yes

button down

yes
audio play

noteArray[arrayIndex];

increment arrayIndex;

waitTime = 0;

audio play off;

waitTime = 0; button up

yes

audio play off;

arrayLength = 0;

arrayIndex =

arrayLength

yes

no

gameMode = 2;

waitTime = 4;

audio play raspberry

decrement waitTime;

waitTime =

0 no

yes

timer

start

Simple-Simon Schematic
The simple-simon schematic shown in Figure 3 is quite simple -- just:

• 4 LEDs (capable of sinking 3.3 volts without a current limiting resistor) on pins a1, a3, a5, and a7,

• 4 SPST switches on pins b1, b3, b6, and b8, and

• a small piezoelectric buzzer that can run on 3.3 volts on pin a4.

Note there is a bit of asymmetry in the a/b pin use below, just to make my switches fit along the edge of the board, but

you can use basically any pins you want for the LEDs and switches, and just change the “dim” statements in the BASIC

program below to match. (The buzzer, OTOH, has to be on one of a3 thru a8 -- I chose a4 -- only those pins have

frequency output capability.)

Figure 3 -- Simple-Simon Schematic

USB

a1

 Flea-Scope

a8

a5

BNC

 buzzer

3
V

3

G
N

D

5
V

b
1

b
8

b
6

3
V

3

G
N

D

5
V

b
3

a0

b
0

a7

a3

a4

Connecting to Flea-Scope™
To program Flea-Scope™, just connect it to your computer, tablet, or phone, and open this webpage:

https://rtestardi.github.io/usbte/stickos-basic.html

Then Click the "Start Connect" button as shown in Figure 4:

Figure 4

And select your Flea-Scope in the resulting dialog and click "Connect" as shown in Figure 5:

Figure 5

You should be connected to the web-page terminal emulator as shown in Figure 6:

Figure 6

You are now ready to enter StickOS commands and/or BASIC program statements.

https://rtestardi.github.io/usbte/stickos-basic.html

Hello World!
By way of introduction, we could take a brief detour and ask, what does the “Hello world!” program look like
in StickOS BASIC? Well, if the baseline goal for an embedded system is to configure an I/O pin and get an LED
to blink, such as the green LED on pin “e2” of the Flea-Scope™ board, then the “Hello world!” program looks
like this (entered text is in bold):

> 10 dim led as pin e2 for digital output

> 20 while 1 do

> 30 let led = !led

> 40 sleep 500 ms

> 50 endwhile

> run

<Ctrl-C>

STOP at line 40!

> _

Line 10 declares a “pin variable” named “led”, then configures the general purpose I/O pin “e2” for digital
output, and finally binds the pin variable to the corresponding pin (in traditional BASIC, the “dim” statement is
used to “dimension” the shape of a variable prior to use). From then on, any modification of the pin variable
is immediately reflected at the I/O pin. Line 20 starts an infinite loop. Line 30 inverts the state of the “e2"
digital output pin to blink the LED. Line 40 delays the program for 500 ms. And finally line 50 ends the infinite
loop.

Type “run” to start the program; press <Ctrl-C> to stop the program.

Hello User!
Furthermore, if you want to use a switch, such as the user switch “S1” of the Flea-Scope™, to condition the
blinking of the LED, so that you can push the switch to stop the blinking, in StickOS BASIC it’s nearly as easy:

> 10 dim led as pin e2 for digital output

> 20 dim switch as pin s1 for digital input debounced inverted

> 30 while 1 do

> 40 if !switch then

> 50 let led = !led

> 60 endif

> 70 sleep 500 ms

> 80 endwhile

> run

<Ctrl-C>

STOP at line 70!

> _

The bulk of the program is like before, with just a few changes. Line 20 declares a “pin variable” named
“switch”, then configures I/O pin “s1” for inverted (i.e., active-low) and debounced (i.e., with a low-pass filter)
digital input, and finally binds the pin variable to the corresponding pin. From then on, examination of the pin
variables results in the current switch state being read. Lines 40 and 60 simply condition the LED blink at line
50 on the switch not being pressed.

Type “run” to start the program; press <Ctrl-C> to stop the program.

Hello Simon!
Enter the following BASIC control program at the StickOS command prompt for simple-simon:

 10 dim notearray[30]

 20 dim gamemode, replaystate, waittime, arraylength, arrayindex

 30 dim last_sw[4]

 40 dim buzzer as pin a4 for frequency output

 50 dim led[0] as pin a1 for digital output

 60 dim led[1] as pin a3 for digital output

 70 dim led[2] as pin a5 for digital output

 80 dim led[3] as pin a7 for digital output

 90 dim sw[0] as pin b1 for digital input debounced inverted

 100 dim sw[1] as pin b3 for digital input debounced inverted

 110 dim sw[2] as pin b6 for digital input debounced inverted

 120 dim sw[3] as pin b8 for digital input debounced inverted

 130 configure timer 1 for 500 ms

 140 on timer 1 do gosub timer_popped

 150 on sw[0]!=last_sw[0] do gosub sw_changed 0, sw[0]

 160 on sw[1]!=last_sw[1] do gosub sw_changed 1, sw[1]

 170 on sw[2]!=last_sw[2] do gosub sw_changed 2, sw[2]

 180 on sw[3]!=last_sw[3] do gosub sw_changed 3, sw[3]

 190 led[0] = 0, led[1] = 0, led[2] = 0, led[3] = 0

 200 buzzer = 0

 210 arraylength = 0

 220 gosub addnote

 230 halt

 240 sub timer_popped

 250 print "timer_popped"

 260 if gamemode==0 then

 270 gosub sw_changed notearray[arrayindex], !replaystate

 280 if replaystate then

 290 arrayindex = arrayindex+1

 300 endif

 310 replaystate = !replaystate

 320 if arrayindex==arraylength then

 330 gamemode = 1

 340 arrayindex = 0

 350 waittime = 0

 360 endif

 370 elseif gamemode==1 then

 380 waittime = waittime+1

 390 if waittime==5 then

 400 gosub gameover

 410 endif

 420 elseif gamemode==2 then

 430 gamemode = 0

 440 elseif gamemode==3 then

 450 buzzer = 100

 460 waittime = waittime+1

 470 if waittime==3 then

 480 replaystate = 0

 490 buzzer = 0

 500 arrayindex = 0

 510 arraylength = 0

 520 gamemode = 0

 530 gosub addnote

 540 endif

 550 endif

 560 endsub

 570 sub lightbuzz n, down

 580 led[n] = down

 590 buzzer = down*(440+110*n)

 600 endsub

 610 sub sw_changed n, down

 620 last_sw[n] = sw[n]

 630 print "sw_changed", n, down

 640 if down then

 650 if gamemode==0 then

 660 gosub lightbuzz n, down

 670 else

 680 if notearray[arrayindex]==n then

 690 gosub lightbuzz n, down

 700 arrayindex = arrayindex+1

 710 waittime = 0

 720 else

 730 gosub gameover

 740 endif

 750 endif

 760 elseif gamemode!=3 then

 770 gosub lightbuzz n, down

 780 waittime = 0

 790 if arrayindex==arraylength then

 800 gosub addnote

 810 endif

 820 endif

 830 endsub

 840 sub addnote

 850 notearray[arraylength] = random&3

 860 arraylength = arraylength+1

 870 arrayindex = 0

 880 gamemode = 2

 890 replaystate = 0

 900 endsub

 910 sub gameover

 920 print "gameover"

 930 buzzer = 100

 940 led[0] = 0, led[1] = 0, led[2] = 0, led[3] = 0

 950 gamemode = 3

 960 waittime = 0

 970 endsub

 980 end

(You can copy the whole program to the clipboard and then use the "Paste" button on the web-page terminal emulator

user interface to load all the lines to StickOS at once.)

Lines 10-30 declare RAM variables, described in the state machine above. Lines 40-120 declare “pin variables” which are

bound to pins on the board -- variables bound for output will transfer their values to the pins, and variables bound for

input will transfer their values from the pins. Lines 130-140 configure a timer to call the timer_popped handler

subroutine every 500ms. Lines 150-180 detect button presses and releases and call the sw_changed handler subroutine

when they happen. Lines 190-230 simply set the initial values for variables and pins and then add the first note to the

challenge, and simply halt execution, allowing the timer and button press and release handler subroutines to manage

the rest of the game (the program “main loop” does nothing, hence the “halt” statement at line 230)!

The subroutines do the rest of the work:

• timer_popped -- this is called every 500ms and checks what game state we are in, and runs the appropriate

code for each game state.

• lightbuzz -- this turns LEDs and the appropriate buzzer tone on or off.

• sw_changed -- this responds to switches being pressed or released, and runs the appropriate code for each

game state.

• addnote -- this adds a random note to the end of the challenge array, as the game continues!

• gameover -- this sounds the raspberry buzzer tone and prepares to restart the game!

To save the program to the flash filesystem, type:

save

To set the program to autorun on MCU power-up, type:

autorun on

To run the program, type:

run

To stop the program, type:

<Ctrl-C>

Diagnostics
What if your program doesn’t work? What if you have a bug in your buzzer or switch or LED circuitry? StickOS supports

fully interactive control of the MCU. You can start running the program by typing “run” and then press <Ctrl-C> to stop

it after all pin variables have been configured, and you will see:

> run

<Ctrl-C>

STOP at line 230!

At that point you can test all your pin variables! Let’s start by turning the buzzer on to 1000 Hz:

> buzzer = 1000

>

You should hear the buzzer at 1000 Hz! Now let’s set to to 2000 Hz:

> buzzer = 2000

>

Finally let’s turn it off:

> buzzer = 0

>

Now let’s turn the LED’s (led[0] on pin a1 thru led[3] on pin a7) on and off, one at a time -- watch them change after

each line:

> led[0] = 1

> led[0] = 0

> led[1] = 1

> led[1] = 0

> led[2] = 1

> led[2] = 0

> led[3] = 1

> led[3] = 0

>

Now we can test the switches! We can print the pin variable values when all switches are released with:

> print sw[0], sw[1], sw[2], sw[3]

0 0 0 0

>

Now press a switch and repeat that command (you can use the “up arrow” button on your keyboard to recall previous

commands), and you should see one of the switches reports “1” rather than “0”!

Note that these switches were declared (or “dimensioned”, in BASIC-speak) like:

dim sw[0] as pin b1 for digital input debounced inverted

This means they are automatically debounced by StickOS and they are also automatically inverted, so when there is a “0

volt” signal on the pin, the BASIC program will report a value of “1”, and when there is a “3.3 volt” signal on the pin, the

BASIC program will report a value of “0”. StickOS automatically enables weak pull-up resistors for digital input pins.

Conclusion: “You don’t even need an ‘app’ for that!!!”
Using StickOS BASIC inside your microcontroller, you can reprogram your microcontroller directly using only a web-page

terminal emulator and high-level BASIC algorithmic statements to manipulate the microcontroller (MCU) pins and

peripherals.

You can trivially create embedded systems to do useful work, like controlling a toaster oven for SMT reflow, or even

make games, like simple-simon!

Even better, using just JavaScript and WebUSB and/or Web Serial in a Chromium-based web browser, you can write a

web-page terminal emulator just once, and deploy it across most USB host computers -- a Windows, Mac, or Linux PC, a

Chromebook, or even an Android phone!

“You don’t even need an ‘app’ for that!!!”

What could be easier???

About the Author
Richard Testardi has a wife and 17yo daughter and lives in Colorado. He is grateful most of the time and

Christian. He loves anything outdoors or math/science related. In the future, he hopes to be teaching high

school students. He lives without a cell phone (well, except a sim-less phone for interoperability testing!)!

