

Build a Simple Toaster Oven Temperature Profile Controller

(Or Anything Else You Want!)

Introduction
Using a Flea-Scope™ board running StickOS® BASIC, it is possible to quickly build a toaster oven

temperature profile controller for performing surface mount (SMT) printed circuit board reflow soldering at

home. It is also possible to build a wide variety of other general-purpose embedded system projects with

minimal software effort, using only a web-page terminal emulator and high-level BASIC algorithmic statements

to manipulate the microcontroller (MCU) pins and peripherals!

A Flea-Scope can be controlled by any Chromium-based web browser that supports WebUSB API or Web

Serial API running on a computer, tablet, or phone (!!!), with no need for further software install – just plug it in

and open a web-page and you are up and running!

(I hope to have Flea-Scopes produced in quantity for under $20 in the near future, to get them into high-schools,

but in the meantime, you can build one yourself with full instructions on the hackaday.io website, below. Oh,

and Flea-Scope is also an 18 million-sample-per-second USB oscilloscope and mixed signal logic analyzer as a

bonus!)

StickOS BASIC running within the Flea-Scope is an entirely MCU-resident interactive programming

environment, which includes an easy-to-use editor, transparent line-by-line compiler, interactive debugger,

performance profiler, and flash filesystem, all controlled thru an interactive command-line user interface (see

Figure 1). In StickOS, external MCU pins may be mapped to BASIC “pin variables” for manipulation or

examination, and internal MCU peripherals may be managed by BASIC control statements and interrupt

handlers.

web-page

terminal

emulator

> _

MCU

w/ StickOS BASIC

• editor

• compiler

• debugger

• profiler

• flash filesystem

Figure 1

embedded system

host computer,

tablet, or phone!

usb

StickOS runs on a wide variety of MCUs, and seamlessly manages the MCU pins and peripherals, including

BASIC program support for:

• digital input/output

• analog to digital converters

• pulse width modulators (for analog output or servo motor control)

• output compare timers (i.e., frequency generators)

• UARTs and I2C/SPI master serial interfaces

• periodic timers

• flash memory (i.e., self-programming)

By its very nature, StickOS supports "in-circuit emulation" -- all you need is a USB or UART transport

connecting the MCU to a host computer, tablet, or phone, and you have full interactive control over the target

embedded system, just as if you were using an in-circuit emulator.

With StickOS, it is no longer necessary to install a software development environment on the host computer,

tablet, or phone; likewise, it is no longer necessary to connect any kind of flash programmer or debug hardware

to the MCU. More importantly, though, with StickOS it is no longer necessary to study a 500+ page MCU

Reference Manual in order to use the MCU external pins and internal peripherals -- StickOS manages them all

for you!

The bottom line is that using only a web-page terminal emulator (such as

https://rtestardi.github.io/usbte/stickos-basic.html) on your host computer, tablet, or phone connected

to a Flea-Scope, the user can easily edit a BASIC program and interactively debug it using breakpoints,

assertions, watchpoints, single-stepping, execution tracing, live variable and pin examination and manipulation,

edit-and-continue, etc. The user can then save the BASIC program to the internal flash filesystem, and finally

set the BASIC program to autorun autonomously when the MCU powers-up.

Hello World!

So what does the “Hello world!” program look like in StickOS BASIC? Well, if the baseline goal for an

embedded system is to configure an I/O pin and get an LED to blink, such as the green LED on pin “e2” of the

Flea-Scope™ board, then the “Hello world!” program looks like this (entered text is in bold):

> 10 dim led as pin e2 for digital output

> 20 while 1 do

> 30 let led = !led

> 40 sleep 500 ms

> 50 endwhile

> run

<Ctrl-C>

STOP at line 40!

> _

Line 10 declares a “pin variable” named “led”, then configures the general purpose I/O pin “e2” for digital

output, and finally binds the pin variable to the corresponding pin (in traditional BASIC, the “dim” statement is

used to “dimension” the shape of a variable prior to use). From then on, any modification of the pin variable is

immediately reflected at the I/O pin. Line 20 starts an infinite loop. Line 30 inverts the state of the “e2" digital

output pin to blink the LED. Line 40 delays the program for 500 ms. And finally line 50 ends the infinite loop.

Type “run” to start the program; press <Ctrl-C> to stop the program.

https://rtestardi.github.io/usbte/stickos-basic.html

Of course, if you really just wanted to print “Hello world!” to the terminal, you could just do:

> 10 print "Hello world!"

> run

Hello world!

> _

Hello User!

If you want to use a switch, such as the user switch “S1” of the Flea-Scope™, to condition the blinking of the

LED, so that you can push the switch to stop the blinking, in StickOS BASIC it’s nearly as easy:

> 10 dim led as pin e2 for digital output

> 20 dim switch as pin s1 for digital input debounced inverted

> 30 while 1 do

> 40 if !switch then

> 50 let led = !led

> 60 endif

> 70 sleep 500 ms

> 80 endwhile

> run

<Ctrl-C>

STOP at line 70!

> _

The bulk of the program is like before, with just a few changes. Line 20 declares a “pin variable” named

“switch”, then configures I/O pin “s1” for inverted (i.e., active-low) and debounced (i.e., with a low-pass filter)

digital input, and finally binds the pin variable to the corresponding pin. From then on, examination of the pin

variables results in the current switch state being read. Lines 40 and 60 simply condition the LED blink at line

50 on the switch not being pressed. Type “run” to start the program; press <Ctrl-C> to stop the program.

Hello Toaster Oven!

Procedure

To build the Toaster Oven Temperature Profile Controller you will need the parts listed in Table 1, and a USB

host computer, tablet, or phone (the examples that follow will assume you are running Microsoft Windows,

though similar procedures work with Mac, Linux, ChromeOS, and Android, as well):

Part Name Manufacturer and Part Number

Flea-Scope™ https://hackaday.io/project/192598-flea-scope-usb-o-scope-18-msps-13-bom-webusb

K-type thermocouple Pimoroni Ltd COM1705
https://www.digikey.com/en/products/detail/pimoroni-ltd/COM1705/9975861

3V solid-state relay Teledyne STH24D25
https://www.mouser.com/ProductDetail/Teledyne-Relays/STH24D25?qs=cFlnt7DBZX%2FYka4cen6X9Q%3D%3D

Op-amp National Semiconductor LM358

3V Buzzer TDK PS1240P02BT
https://www.mouser.com/ProductDetail/TDK/PS1240P02BT?qs=d7g9p1yFhWaZXSY9MjKMkw%3D%3D

1k ohm resistor Xicon 299-1K-RC

100k ohm resistor Xicon 299-100K-RC

36 pin header FCI 68001-236HLF

Table 1

https://www.mouser.com/ProductDetail/TDK/PS1240P02BT?qs=d7g9p1yFhWaZXSY9MjKMkw%3D%3D

I soldered two 12 pin headers onto the bottom of the Flea-Scope and mounted it in a solderless breadboard for

ease of assembly (see Figure 2), but that is not required.

Figure 2A

Figure 2B

Schematic

The schematic for the Toaster Oven Temperature Profile Controller is shown in Figure 3.

Figure 3

 buzzer

USB

3
V

3

G
N

D

a1

G
N

D

+
V

K-type thermocouple

 to 3V

solid state

relay

 Flea-Scope

LM358

100k 1k

yellow

red

a8

a6

BNC

Configuration

Once the Toaster Oven Temperature Profile Controller is built, the next step is to enter the BASIC program into

StickOS on the Flea-Scope board.

When the board is connected to a USB host computer, tablet, or phone, it will present a virtual COM port.

At this point you can use a web-page terminal emulator to connect to the virtual COM port using WebUSB or

Web Serial. Simply open: https://rtestardi.github.io/usbte/stickos-basic.html

Then Click the "Start Connect" button as shown in Figure 4:

Figure 4

And select your Flea-Scope in the resulting dialog and click "Connect" again as shown in Figure 5:

Figure 5

You should be connected to the web-page terminal emulator as shown in Figure 6:

Figure 6

https://rtestardi.github.io/usbte/stickos-basic.html

You are now ready to enter StickOS commands and/or BASIC program statements.

The BASIC Control Program

Enter the following BASIC control program at the StickOS command prompt to control the Toaster Oven

Temperature Profile Controller:

 10 dim target, secs

 20 dim thermocouple as pin a8 for analog input

 30 dim relay as pin a1 for digital output

 40 dim buzzer as pin a6 for frequency output

 50 data 512, 90, 746, 105, 894, 20, -1, -1

 60 configure timer 0 for 1 s

 70 on timer 0 do gosub adjust

 80 while target!=-1 do

 90 sleep secs s

 100 read target, secs

 110 endwhile

 120 off timer 0

 130 relay = 0, buzzer = 100

 140 sleep 1 s

 150 buzzer = 0

 160 end

 170 sub adjust

 180 relay = thermocouple<target

 190 buzzer = thermocouple

 200 sleep 100 ms

 210 buzzer = target

 220 sleep 100 ms

 230 buzzer = 0

 240 endsub

(You can copy the program to the clipboard and then use the "Paste" button on the web-page user interface to

load all the lines to StickOS at once.)

Line 10 declares two simple RAM variables. Line 20 declares a “pin variable” named “thermocouple”,

configures Flea-Scope pin “a8” for analog input thru a low-pass filter, and finally binds the pin variable to the

corresponding pin; subsequent examination of the pin variables returns in the current ADC values being read, in

millivolts (mV). Line 30 declares a pin variable named “relay” bound to Flea-Scope pin “a1” configured for

digital output; subsequently setting the variable to 1 turns the relay on and setting it to 0 turns the relay off.

Line 40 declares a frequency output pin variable to manipulate the MCU pin attached to the buzzer;

subsequently setting the variable to a number (in hertz) configures the MCU pin to output that frequency to the

buzzer (0 turns the buzzer off).

Line 50 contains the reflow cycle temperature profile ramp target and time information:

• 90 seconds at up to 512 millivolts (125 Celsius)

• 105 seconds at up to 746 millivolts (183 Celsius)

• 20 seconds at up to 894 millivolts (220 Celsius)

Line 60 configures a periodic timer to run every second, and line 70 specifies that when the timer expires, the

subroutine "adjust" should be called. The subroutine defined in lines 170 to 240 will first turn on the relay if the

thermocouple is below the target voltage (or turn it off otherwise) and then play a brief audio tone of both the

current thermocouple value as well as the target value to indicate the cycle progress.

Lines 80 thru 110 simply cycle thru the temperature profile ramp and update the relay and buzzer based on the

state of the thermocouple.

Lines 120 to 150 unconfigures the periodic timer and turns off the relay and then plays a short low frequency

tone to indicate the end of the cycle.

Then the program ends.

To save the program to the flash filesystem, type:

save

To run the program, type:

run

To set the program to autorun on MCU power-up, type:

autorun on

Diagnostics

What if your program doesn’t work? What if you have a bug in your op-amp or relay circuitry? StickOS

supports fully interactive control of the MCU. You can start running the program by typing “run” and then

press <Ctrl-C> to stop it after a minute or two and you will see:

> run

<Ctrl-C>

STOP at line 90!

At that point you can print the current value of the thermocouple, in millivolts, with:

> print thermocouple

609

You can turn on the MCU output connected to the relay with:

> let relay = 1

You can then watch the thermocouple voltage increase:

> print thermocouple

644

And turn off the MCU output connected to the relay:

> let relay = 0

And watch the thermocouple decrease:

> print thermocouple

570

You can even continue the program from where it left off:

> cont

You can use breakpoints, assertions, watchpoints, single-stepping, execution tracing, live variable and pin

examination and manipulation, and even edit-and-continue as part of the StickOS interactive debugging

experience.

Conclusion: “You don’t even need an ‘app’ for that!!!”
Using StickOS BASIC inside your microcontroller, you can then reprogram your microcontroller directly using

only a web-page terminal emulator and high-level BASIC algorithmic statements to manipulate the

microcontroller (MCU) pins and peripherals.

Even better, using just JavaScript and WebUSB and/or Web Serial in a Chromium-based web browser, you can

write a web-page terminal emulator just once, and deploy it across most USB host computers -- a Windows,

Mac, or Linux PC, a Chromebook, or even an Android phone!

“You don’t even need an ‘app’ for that!!!”

What could be easier???

Toaster Oven Tips
Fine pitched SMT reflow soldering can be an intimidating task to the newcomer, but I have found that I can

reliably reflow “Flea-Scopes”, including 0.5mm pitch QFP’s and even 0.5mm QFN’s with just a few tricks:

• To mount a QFN (leadless) package, I first flux the component pins and then tin them with my soldering

iron; each pin ends up with a little bump of solder on it. I then flux the board pads and tin them, with a

similar and opposing bump (it definitely helps to have a solder mask on the board, but I have done it

without). Then I flux everything again and align the bumps on the QFN pads with the opposing bumps on

the board, and prepare for reflow using your new Toaster Oven Temperature Profile Controller.

• To mount the QFP (leaded) packages, I use a similar procedure but do not tin the delicate component pins.

• After reflow, if touchup is needed (the typical problem will be “opens”, not “shorts”), I use a generous

amount of flux at the pin/pad interface and then drag the ever slightest amount of solder across it with my

soldering iron. Note that the flux is critical in this step to avoid any bridging/shorts.

• I used a Weller WES51 soldering iron with an ETP (1/32" screwdriver) tip, Chip Quik SMDLTLFP

solder paste, Kester Pocket-Pak lead-free rosin-core solder, a Kester #2331-ZX water soluble flux pen,

and a PanaVise PV Jr. Model 201 (to hold things).

Links
The hackaday page for Flea-Scope™, with full build instructions (give me a like, and make me smile! :-), is

here: https://hackaday.io/project/192598-flea-scope-usb-o-scope-18-msps-13-bom-webusb

The Flea-Scope™ StickOS® BASIC Deep Dive User Interface is here:
https://rtestardi.github.io/usbte/stickos-basic.html

The StickOS BASIC Quick Reference Guide is here:
https://rtestardi.github.io/StickOS/downloads/quickref.v1.90.pdf

Full StickOS BASIC documentation and downloads for various supported MCUs can be found at:
https://rtestardi.github.io/StickOS/

A number of examples of WebUSB and Web Serial usage, ranging from a simple terminal emulator to the Flea-

Scope™ GUI are here: https://github.com/rtestardi/usbte

WebUSB documentation is here: https://wicg.github.io/webusb/

Web Serial documentation is here: https://wicg.github.io/serial/

CDC/ACM documentation starts here:
https://en.wikipedia.org/wiki/USB_communications_device_class

About the Author
Richard Testardi has a wife and 17yo daughter and lives in Colorado. He is grateful most of the time

and Christian. He loves anything outdoors or math/science related. In the future, he hopes to be

teaching high school students. He lives without a cell phone (well, except a sim-less phone for

interoperability testing!)!

